Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34685096

RESUMEN

A combination of in situ nanocalorimetry with simultaneous nanofocus 2D Wide-Angle X-ray Scattering (WAXS) was used to study polymorphic behaviour and structure formation in a single micro-drop of isotactic polypropylene (iPP) with defined thermal history. We were able to generate, detect, and characterize a number of different iPP morphologies using our custom-built ultrafast chip-based nanocalorimetry instrument designed for use with the European Synchrotron Radiation Facility (ESRF) high intensity nanofocus X-ray beamline facility. The detected iPP morphologies included monoclinic alpha-phase crystals, mesophase, and mixed morphologies with different mesophase/crystalline compositional ratios. Monoclinic crystals formed from the mesophase became unstable at heating rates above 40 K s-1 and showed melting temperatures as low as ~30 K below those measured for iPP crystals formed by slow cooling. We also studied the real-time melt crystallization of nanogram-sized iPP samples. Our analysis revealed a mesophase nucleation time of around 1 s and the co-existence of mesophase and growing disordered crystals at high supercooling ≤328 K. The further increase of the iPP crystallization temperature to 338 K changed nucleation from homogeneous to heterogeneous. No mesophase was detected above 348 K. Low supercooling (≥378 K) led to the continuous growth of the alpha-phase crystals. In conclusion, we have, for the first time, measured the mesophase nucleation time of supercooled iPP melted under isothermal crystallization conditions using a dedicated experimental setup designed to allow simultaneous ultrafast chip-based nanocalorimetry and nanofocus X-ray diffraction analyses. We also provided experimental evidence that upon heating, the mesophase converts directly into thermodynamically stable monoclinic alpha-phase crystals via perfection and reorganization and not via partial melting. The complex phase behaviour of iPP and its dependence on both crystallization temperature and time is presented here using a time-temperature-transformation (TTT) diagram.

2.
ACS Nano ; 14(5): 5278-5287, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32298080

RESUMEN

We report on the colloidal stability of nanoparticles with alkanethiol shells in apolar solvents. Small-angle X-ray scattering and molecular dynamics simulations were used to characterize the interaction between nanoparticles in linear alkane solvents ranging from hexane to hexadecane, including 4 nm gold cores with hexadecanethiol shells and 6 nm cadmium selenide cores with octadecanethiol shells. We find that the agglomeration is enthalpically driven and that, contrary to what one would expect from classical colloid theory, the temperature at which the particles agglomerate increases with increasing solvent chain length. We demonstrate that the inverted trend correlates with the temperatures at which the ligands order in the different solvents and show that the inversion is due to a combination of enthalpic and entropic effects that enhance the stability of the ordered ligand state as the solvent length increases. We also explain why cyclohexane is a better solvent than hexadecane despite the two having very similar solvation parameters.

3.
Nano Lett ; 20(6): 4102-4110, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32163287

RESUMEN

Semiconductor nanoplatelets exhibit spectrally pure, directional fluorescence. To make polarized light emission accessible and the charge transport effective, nanoplatelets have to be collectively oriented in the solid state. We discovered that the collective nanoplatelets orientation in monolayers can be controlled kinetically by exploiting the solvent evaporation rate in self-assembly at liquid interfaces. Our method avoids insulating additives such as surfactants, making it ideally suited for optoelectronics. The monolayer films with controlled nanoplatelets orientation (edge-up or face-down) exhibit long-range ordering of transition dipole moments and macroscopically polarized light emission. Furthermore, we unveil that the substantial in-plane electronic coupling between nanoplatelets enables charge transport through a single nanoplatelets monolayer, with an efficiency that strongly depends on the orientation of the nanoplatelets. The ability to kinetically control the assembly of nanoplatelets into ordered monolayers with tunable optical and electronic properties paves the way for new applications in optoelectronic devices.

4.
Nano Lett ; 19(8): 5246-5252, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31251877

RESUMEN

We studied the concentration-dependent agglomeration of apolar nanoparticles in different solvents. Octanethiol-stabilized gold nanoparticles (AuNPs) in evaporating liquid droplets were observed in situ using small-angle X-ray scattering. Concurrent analysis of liquid volume and particle agglomeration provided time-dependent absolute concentrations of free and agglomerated particles. All dispersions underwent an initial stage where the particle concentration increased but no agglomerates formed. Subsequently, agglomeration started at concentrations that varied by several orders of magnitude for different solvents. While agglomerates grew, the concentration of the dispersed particles remained at a constant "colloidal solubility" in most solvents. We consistently found that the colloidal stability of AuNPs decreased as cyclohexane > heptane > nonane > decane > toluene and suggest that details of the molecular interactions between solvent and ligand shell set this order.

5.
Adv Mater ; : e1803159, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30141194

RESUMEN

Active nanocomposites are created with liquid inclusions that contain plasmonic gold nanoparticles inside a polymeric matrix. The alkylthiol-coated gold particles are designed to reversible agglomerate at certain temperatures, which changes the plasmonic coupling and thus optical properties. It is found that particles confined to the liquid inclusions inside the active composite retain this capability and cause macroscopic, temperature-dependent color change of the solid. The transition is fully reversible for at least 100 times and tunable in temperature via particle size and ligand. This method is suitable to "package" responsive dispersion in solid composites to exploit their dynamic properties in materials.

6.
Anal Chem ; 87(18): 9494-9, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26272107

RESUMEN

Smart detection systems for explosive sensors are designed both to detect explosives in the air at trace level and identify the threat for a specific response. Following this need we have succeeded in using microthermal analysis to sensitively identify and discriminate between RDX and PETN explosive vapors at trace level. Once the explosive vapor is trapped in a porous material, heating the material at a fast rate of 3000 K/s up to 350 °C will result in a thermal pattern specifically corresponding to the explosive and its interaction with the porous material. The explosive signatures obtained make it possible to simultaneously identify the presence and the nature of the explosive vapor in just a few milliseconds. Therefore, this also allows the development of multitarget devices using porous material for capturing the vapor combined with microthermal analysis for fast detection and identification. So far it is the first time that chip calorimetry has been used to characterize and identify explosives in vapor state.

7.
Langmuir ; 31(1): 529-34, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25526765

RESUMEN

Noble metal nanoparticles with ligand shells are of interest for applications in catalysis, thermo-plasmonics, and others, involving heating processes. To gain insight into the structure-formation processes in such systems, self-assembly of carbohydrate-functionalized gold nanoparticles during precipitation from solution and during further heating to ca. 340 °C was explored by in situ combination of nanobeam SAXS/WAXS and nanocalorimetry. Upon precipitation from solution, X-ray scattering reveals the appearance of small 2D domains of close-packed nanoparticles. During heating, increasing interpenetration of the nanoparticle soft shells in the domains is observed up to ca. 81 °C, followed by cluster formation at ca. 125 °C, which transform into crystalline gold nuclei at around 160 °C. Above ca. 200 °C, one observes the onset of coalescence and grain growth resulting in gold crystallites of average size of about 100 nm. The observed microstructural changes are in agreement with the in situ heat capacity measurements with nanocalorimetry.

8.
J Synchrotron Radiat ; 21(Pt 1): 223-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24365940

RESUMEN

A microelectromechanical-systems-based calorimeter designed for use on a synchrotron nano-focused X-ray beamline is described. This instrument allows quantitative DC and AC calorimetric measurements over a broad range of heating/cooling rates (≤100000 K s(-1)) and temperature modulation frequencies (≤1 kHz). The calorimeter was used for high-resolution thermal imaging of nanogram-sized samples subjected to X-ray-induced heating. For a 46 ng indium particle, the measured temperature rise reaches ∼0.2 K, and is directly correlated to the X-ray absorption. Thermal imaging can be useful for studies of heterogeneous materials exhibiting physical and/or chemical transformations. Moreover, the technique can be extended to three-dimensional thermal nanotomography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...