Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 375
1.
Br J Pharmacol ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38760890

BACKGROUND AND PURPOSE: Thrombo-inflammation is a key feature of stroke pathophysiology and provides multiple candidate drug targets. Thrombin exerts coagulation-independent actions via protease-activated receptors (PAR), of which PAR1 has been implicated in stroke-associated neuroinflammation. The role of PAR4 in this context is less clear. This study examined if the selective PAR4 antagonist ML354 provides neuroprotection in experimental stroke and explored the underlying mechanisms. EXPERIMENTAL APPROACH: Mouse primary cortical neurons were exposed to oxygen-glucose deprivation (OGD) and simulated reperfusion ± ML354. For comparison, functional Ca2+-imaging was performed upon acute stimulation with a PAR4 activating peptide or glutamate. Male mice underwent sham operation or transient middle cerebral artery occlusion (tMCAO), with ML354 or vehicle treatment beginning at recanalization. A subset of mice received a platelet-depleting antibody. Stroke size and functional outcomes were assessed. Abundance of target genes, proteins, and cell markers was determined in cultured cells and tissues by qPCR, immunoblotting, and immunofluorescence. KEY RESULTS: Stroke up-regulated PAR4 expression in cortical neurons in vitro and in vivo. OGD augments spontaneous and PAR4-mediated neuronal activity; ML354 suppresses OGD-induced neuronal excitotoxicity and apoptosis. ML354 applied in vivo after tMCAO reduced infarct size, apoptotic markers, macrophage accumulation, and interleukin-1ß expression. Platelet depletion did not affect infarct size in mice with tMCAO ± ML354. CONCLUSIONS AND IMPLICATIONS: Selective PAR4 inhibition during reperfusion improves infarct size and neurological function after experimental stroke by blunting neuronal excitability, apoptosis, and local inflammation. PAR4 antagonists may provide additional neuroprotective benefits in patients with acute stroke beyond their canonical antiplatelet action.

2.
Int J Cardiol Heart Vasc ; 52: 101419, 2024 Jun.
Article En | MEDLINE | ID: mdl-38725439

Background: Cardiac troponin I (cTnI) above the 99th percentile is associated with an increased risk of major adverse events. Patients with detectable cTnI below the 99th percentile are a heterogeneous group with a less well-defined risk profile. The purpose of this study is to investigate the prognostic relevance of detectable cTnI below the 99th percentile in patients undergoing coronary angiography. Methods: The study included 14,776 consecutive patients (mean age of 65.4 ± 12.7 years, 71.3 % male) from the Essen Coronary Artery Disease (ECAD) registry. Patients with cTnI levels above the 99th percentile and patients with ST-segment elevation acute myocardial infarction were excluded. All-cause mortality was defined as the primary endpoint. Results: Detectable cTnI below the 99th percentile was present in 2811 (19.0 %) patients, while 11,965 (81.0 %) patients were below detection limit of the employed assay. The mean follow-up was 4.25 ± 3.76 years. All-cause mortality was 20.8 % for patients with detectable cTnI below the 99th percentile and 15.0 % for those without detectable cTnI. In a multivariable Cox regression analysis, detectable cTnI was independently associated with all-cause mortality with a hazard ratio of 1.60 (95 % CI 1.45-1.76; p < 0.001). There was a stepwise relationship with increasing all-cause mortality and tertiles of detectable cTnI levels with hazard ratios of 1.63 (95 % CI 1.39-1.90) for the first tertile to 2.02 (95 % CI 1.74-2.35) for the third tertile. Conclusions: Detectable cTnI below the 99th percentile is an independent predictor of mortality in patients undergoing coronary angiography with the risk of death growing progressively with increasing troponin levels.

3.
Europace ; 26(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38591838

AIMS: Recent trial data demonstrate beneficial effects of active rhythm management in patients with atrial fibrillation (AF) and support the concept that a low arrhythmia burden is associated with a low risk of AF-related complications. The aim of this document is to summarize the key outcomes of the 9th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). METHODS AND RESULTS: Eighty-three international experts met in Münster for 2 days in September 2023. Key findings are as follows: (i) Active rhythm management should be part of the default initial treatment for all suitable patients with AF. (ii) Patients with device-detected AF have a low burden of AF and a low risk of stroke. Anticoagulation prevents some strokes and also increases major but non-lethal bleeding. (iii) More research is needed to improve stroke risk prediction in patients with AF, especially in those with a low AF burden. Biomolecules, genetics, and imaging can support this. (iv) The presence of AF should trigger systematic workup and comprehensive treatment of concomitant cardiovascular conditions. (v) Machine learning algorithms have been used to improve detection or likely development of AF. Cooperation between clinicians and data scientists is needed to leverage the potential of data science applications for patients with AF. CONCLUSIONS: Patients with AF and a low arrhythmia burden have a lower risk of stroke and other cardiovascular events than those with a high arrhythmia burden. Combining active rhythm control, anticoagulation, rate control, and therapy of concomitant cardiovascular conditions can improve the lives of patients with AF.


Atrial Fibrillation , Stroke , Humans , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Stroke/etiology , Stroke/prevention & control , Risk , Hemorrhage , Anticoagulants/therapeutic use
4.
Article En | MEDLINE | ID: mdl-38652276

Thrombin inhibition suppresses adiposity, WAT inflammation and metabolic dysfunction in mice. Protease-activated receptor (PAR)1 does not account for thrombin-driven obesity, so we explored the culprit role of PAR4 in this context. Male WT and PAR-4-/- mice received a high fat diet (HFD) for 8 weeks, WT controls received standard chow. Body fat was quantified by NMR. Epididymal WAT was assessed by histology, immunohistochemistry, qPCR and lipase activity assay. 3T3-L1 preadipocytes were differentiated ± thrombin, acutely stimulated ± PAR4 activating peptide (AP) and assessed by immunoblot, qPCR and U937 monocyte adhesion. Epicardial adipose tissue (EAT) from obese and lean patients was assessed by immunoblot. PAR4 was upregulated in mouse WAT under HFD. PAR4-/- mice developed less visceral adiposity and glucose intolerance under HFD, featuring smaller adipocytes, fewer macrophages and lower expression of adipogenic (leptin, PPARγ) and pro-inflammatory genes (CCL2, IL-1ß) in WAT. HFD-modified activity and expression of lipases or perilipin were unaffected by PAR4 deletion. 3T3-L1 adipocytes differentiated with thrombin retained Ki67 expression, further upregulated IL-1ß and CCL2 and were more adhesive for monocytes. In mature adipocytes, PAR4-AP increased phosphorylated ERK1/2 and AKT, upregulated Ki67, CCl2, IL-ß and hyaluronan synthase 1 but not TNF-α mRNA, and augmented hyaluronidase-sensitive monocyte adhesion. Obese human EAT expressed more PAR4, CD68 and CD54 than lean EAT. PAR4 upregulated in obesity supports adipocyte hypertrophy, WAT expansion and thrombo-inflammation. The emerging PAR4 antagonists provide a therapeutic perspective in this context beyond their canonical antiplatelet action.

5.
Article En | MEDLINE | ID: mdl-38652279

Trained immunity of monocytes, endothelial, and smooth muscle cells augments the cytokine response to secondary stimuli. Immune training is characterized by stabilization of hypoxia-inducible factor (HIF)-1α, mTOR activation, and aerobic glycolysis. Cardiac fibroblast (CF)-myofibroblast transition upon myocardial ischemia/reperfusion (I/R) features epigenetic and metabolic adaptations reminiscent of trained immunity. We assessed the impact of I/R on characteristics of immune training in human CF and mouse myocardium. I/R was simulated in vitro with transient metabolic inhibition. CF primed with simulated I/R or control buffer were 5 days later re-stimulated with Pam3CSK for 24 h. Mice underwent transient left anterior descending artery occlusion or sham operation with reperfusion for up to 5 days. HIF-regulated metabolic targets and cytokines were assessed by qPCR, immunoblot, and ELISA and glucose consumption, lactate release, and lactate dehydrogenase (LDH) by chromogenic assay. Simulated I/R increased HIF-1α stabilization, mTOR phosphorylation, glucose consumption, lactate production, and transcription of PFKB3 and F2RL3, a HIF-regulated target gene, in human CF. PGK1 and LDH mRNAs were suppressed. Intracellular LDH transiently increased after simulated I/R, and extracellular LDH showed sustained elevation. I/R priming increased abundance of pro-caspase-1, auto-cleaved active caspase-1, and the expression and secretion of interleukin (IL)-1ß, but did not augment Pam3CSK-stimulated cytokine transcription or secretion. Myocardial I/R in vivo increased abundance of HIF-1 and the precursor and cleaved forms of caspase-1, caspase-11, and caspase-8, but not of LDH-A or phospho-mTOR. I/R partially reproduces features of immune training in human CF, specifically HIF-1α stabilization, aerobic glycolysis, mTOR phosphorylation, and PFKB3 transcription. I/R does not augment PGK1 or LDH expression or the cytokine response to Pam3CSK. Regulation of PAR4 and inflammasome caspases likely occurs independently of an immune training repertoire.

6.
Eur Heart J ; 45(14): 1224-1240, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38441940

Heart failure (HF) patients have a significantly higher risk of new-onset cancer and cancer-associated mortality, compared to subjects free of HF. While both the prevention and treatment of new-onset HF in patients with cancer have been investigated extensively, less is known about the prevention and treatment of new-onset cancer in patients with HF, and whether and how guideline-directed medical therapy (GDMT) for HF should be modified when cancer is diagnosed in HF patients. The purpose of this review is to elaborate and discuss the effects of pillar HF pharmacotherapies, as well as digoxin and diuretics on cancer, and to identify areas for further research and novel therapeutic strategies. To this end, in this review, (i) proposed effects and mechanisms of action of guideline-directed HF drugs on cancer derived from pre-clinical data will be described, (ii) the evidence from both observational studies and randomized controlled trials on the effects of guideline-directed medical therapy on cancer incidence and cancer-related outcomes, as synthetized by meta-analyses will be reviewed, and (iii) considerations for future pre-clinical and clinical investigations will be provided.


Heart Failure , Neoplasms , Humans , Heart Failure/drug therapy , Neoplasms/epidemiology
7.
bioRxiv ; 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38496584

BACKGROUND AND AIMS: Substantial sex-based differences have been reported in atrial fibrillation (AF), with female patients experiencing worse symptoms, increased complications from drug side effects or ablation, and elevated risk of AF-related stroke and mortality. Recent studies revealed sex-specific alterations in AF-associated Ca2+ dysregulation, whereby female cardiomyocytes more frequently exhibit potentially proarrhythmic Ca2+-driven instabilities compared to male cardiomyocytes. In this study, we aim to gain a mechanistic understanding of the Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in males vs females and establish their responses to Ca2+-targeted interventions. METHODS AND RESULTS: We incorporated known sex differences and AF-associated changes in the expression and phosphorylation of key Ca2+-handling proteins and in ultrastructural properties and dimensions of atrial cardiomyocytes into our recently developed 3D atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Our simulations of quiescent cardiomyocytes show increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Parameter sensitivity analysis uncovered precise arrhythmogenic contributions of each component that was implicated in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation in female AF cardiomyocytes emerged as the major SCR contributor, while reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulations of tentative Ca2+-targeted interventions identified potential strategies to attenuate Ca2+-driven arrhythmogenic events in female atria (e.g., t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), and revealed enhanced efficacy when applied in combination. CONCLUSIONS: Our sex-specific computational models of human atrial cardiomyocytes uncover increased propensity to Ca2+-driven arrhythmogenic events in female compared to male atrial cardiomyocytes in AF, and point to combined Ca2+-targeted interventions as promising approaches to treat AF in female patients. Our study establishes that AF treatment may benefit from sex-dependent strategies informed by sex-specific mechanisms.

8.
Eur Heart J Cardiovasc Pharmacother ; 10(3): 219-244, 2024 May 04.
Article En | MEDLINE | ID: mdl-38379024

Although cardiovascular diseases (CVDs) are the leading cause of death worldwide, their pharmacotherapy remains suboptimal. Thus, there is a clear unmet need to develop more effective and safer pharmacological strategies. In this review, we summarize the most relevant advances in cardiovascular pharmacology in 2023, including the approval of first-in-class drugs that open new avenues for the treatment of atherosclerotic CVD and heart failure (HF). The new indications of drugs already marketed (repurposing) for the treatment of obstructive hypertrophic cardiomyopathy, hypercholesterolaemia, type 2 diabetes, obesity, and HF; the impact of polypharmacy on guideline-directed drug use is highlighted as well as results from negative clinical trials. Finally, we end with a summary of the most important phase 2 and 3 clinical trials assessing the efficacy and safety of cardiovascular drugs under development for the prevention and treatment of CVDs.


Cardiovascular Agents , Cardiovascular Diseases , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Cardiovascular Agents/therapeutic use , Cardiovascular Agents/adverse effects , Treatment Outcome , Animals , Drug Repositioning , Drug Development
9.
Int J Cardiol Heart Vasc ; 50: 101328, 2024 Feb.
Article En | MEDLINE | ID: mdl-38419603

Aim: Social media (SoMe) are emerging as important tools for research dissemination. Twitter/X promotion has been shown to increase citation rates in well-established journals. We aimed to test the effect of a SoMe promotion strategy on the Mendeley reader counts, the Altmetric Attention Score and the number of citations in an upcoming open-access journal. Methods: The #TweetTheJournal study is a randomized, controlled study. Articles published in seven subsequent issues of the International Journal of Cardiology Heart & Vasculature (April 2021-April 2022) were randomized to a Twitter/X promotion arm (articles were posted four times) and to a control arm (without active posting). Articles with accompanied editorials were excluded. Primary endpoint of the study was Mendeley reader count, secondary endpoints were Altmetric Attention Score and number of citations. Follow-up was one year. Results: SoMe promotion of articles showed no statistically significant difference in Mendeley reader counts or number of citations at one year follow up. SoMe promotion resulted in a statistically significant higher Altmetric Attention Score in the intervention compared to the control group (RR 1.604, 95 % CI 1.024-2.511, p = 0.039). In the overall group, Altmetric Attention Score showed a correlation with Mendeley reader counts (Spearman's ρ = 0.202, p = 0.010) and Mendeley reader counts correlated significantly with number of citations (Spearman's ρ = 0.372, p < 0.001). Conclusion: A dedicated SoMe promotion strategy did not result in statistically significant differences in early impact indicators as the Mendeley reader count in a upcoming journal, but increased the Altmetric Attention Score.

10.
Curr Protoc ; 4(2): e994, 2024 Feb.
Article En | MEDLINE | ID: mdl-38372479

Cardiac arrhythmias are a common cardiac condition that might lead to fatal outcomes. A better understanding of the molecular and cellular basis of arrhythmia mechanisms is necessary for the development of better treatment modalities. To aid these efforts, various mouse models have been developed for studying cardiac arrhythmias. Both genetic and surgical mouse models are commonly used to assess the incidence and mechanisms of arrhythmias. Since spontaneous arrhythmias are uncommon in healthy young mice, intracardiac programmed electrical stimulation (PES) can be performed to assess the susceptibility to pacing-induced arrhythmias and uncover the possible presence of a proarrhythmogenic substrate. This procedure is performed by positioning an octopolar catheter inside the right atrium and ventricle of the heart through the right jugular vein. PES can provide insights into atrial and ventricular electrical activity and reveal whether atrial and/or ventricular arrhythmias are present or can be induced. Here, we explain detailed procedures used to perform this technique, possible troubleshooting scenarios, and methods to interpret the results obtained. © 2024 Wiley Periodicals LLC. Basic Protocol: Programmed electrical stimulation in mice.


Arrhythmias, Cardiac , Electrophysiologic Techniques, Cardiac , Mice , Animals , Arrhythmias, Cardiac/therapy , Heart Ventricles , Heart Atria , Electric Stimulation
11.
Lancet Reg Health Eur ; 37: 100785, 2024 Feb.
Article En | MEDLINE | ID: mdl-38362554

Atrial fibrillation (AF) is the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence dramatically increases with age and could reach up to ∼10% in the elderly. The management of AF is a complex issue that is object of extensive ongoing basic and clinical research, it depends on its genetic and epigenetic causes, and it varies considerably geographically and also according to the ethnicity. Mechanistically, over the last decade, Genome Wide Association Studies have uncovered over 100 genetic loci associated with AF, and have shown that European ancestry is associated with elevated risk of AF. These AF-associated loci revolve around different types of disturbances, including inflammation, electrical abnormalities, and structural remodeling. Moreover, the discovery of epigenetic regulatory mechanisms, involving non-coding RNAs, DNA methylation and histone modification, has allowed unravelling what modifications reshape the processes leading to arrhythmias. Our review provides a current state of the field regarding the identification and functional characterization of AF-related genetic and epigenetic regulatory networks, including ethnic differences. We discuss clear and emerging connections between genetic regulation and pathophysiological mechanisms of AF.

12.
Int J Cardiol Heart Vasc ; 50: 101340, 2024 Feb.
Article En | MEDLINE | ID: mdl-38313450

Purpose of the Report: Combined cardiac 68Ga-Fibroblast-Activation Protein-alpha inhibitor (FAPI) positron-emission tomography (PET) and cardiac magnetic resonance imaging (MRI) constitute a novel diagnostic tool in patients for the assessment of myocardial damage after an acute myocardial infarction (AMI). Purpose of this pilot study was to evaluate simultaneous Ga-68-FAPI-46-PET/MR imaging in the delayed phase after AMI. Material and Methods: Eleven patients underwent hybrid 68Ga-FAPI-46 PET/MRI post AMI. Standardized uptake values and fibroblast activation volume (FAV) were calculated and correlated with serum biomarkers and MRI parameters. Results: Significant 68Ga-FAPI-46 uptake could be demonstrated in 11 (100 %) patients after a mean period of 30.9 ± 22.0 days. FAV significantly exceeded the infarction size in MRI and showed a good correlation to MRI parameters as well as to serum biomarkers of myocardial damage. Conclusions: 68Ga-FAPI-46 PET/MRI offers molecular and morphological imaging of affected myocardium after AMI. This study demonstrates ongoing fibroblast activation in a delayed phase after AMI and generates hypotheses for future studies while aiming for a better understanding of myocardial remodeling following ischemic tissue damage.

13.
Cells ; 13(2)2024 01 05.
Article En | MEDLINE | ID: mdl-38247800

High-protein diets (HPDs) offer health benefits, such as weight management and improved metabolic profiles. The effects of HPD on cardiac arrhythmogenesis remain unclear. Atrial fibrillation (AF), the most common arrhythmia, is associated with inflammasome activation. The role of the Absent-in-Melanoma 2 (AIM2) inflammasome in AF pathogenesis remains unexplored. In this study, we discovered that HPD increased susceptibility to AF. To demonstrate the involvement of AIM2 signaling in the pathogenesis of HPD-induced AF, wildtype (WT) and Aim2-/- mice were fed normal-chow (NC) and HPD, respectively. Four weeks later, inflammasome activity was upregulated in the atria of WT-HPD mice, but not in the Aim2-/--HPD mice. The increased AF vulnerability in WT-HPD mice was associated with abnormal sarcoplasmic reticulum (SR) Ca2+-release events in atrial myocytes. HPD increased the cytoplasmic double-strand (ds) DNA level, causing AIM2 activation. Genetic inhibition of AIM2 in Aim2-/- mice reduced susceptibility to AF, cytoplasmic dsDNA level, mitochondrial ROS production, and abnormal SR Ca2+-release in atrial myocytes. These data suggest that HPD creates a substrate conducive to AF development by activating the AIM2-inflammasome, which is associated with mitochondrial oxidative stress along with proarrhythmic SR Ca2+-release. Our data imply that targeting the AIM2 inflammasome might constitute a novel anti-AF strategy in certain patient subpopulations.


Atrial Fibrillation , Diet, High-Protein , Animals , Mice , Atrial Fibrillation/etiology , Atrial Fibrillation/metabolism , Cytoplasm , Diet, High-Protein/adverse effects , DNA-Binding Proteins/metabolism , Inflammasomes
14.
Cardiovasc Res ; 120(5): 506-518, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38181429

AIMS: Cellular senescence is a stress-related or aging response believed to contribute to many cardiac conditions; however, its role in atrial fibrillation (AF) is unknown. Age is the single most important determinant of the risk of AF. The present study was designed to (i) evaluate AF susceptibility and senescence marker expression in rat models of aging and myocardial infarction (MI), (ii) study the effect of reducing senescent-cell burden with senolytic therapy on the atrial substrate in MI rats, and (iii) assess senescence markers in human atrial tissue as a function of age and the presence of AF. METHODS AND RESULTS: AF susceptibility was studied with programmed electrical stimulation. Gene and protein expression was evaluated by immunoblot or immunofluorescence (protein) and digital polymerase chain reaction (PCR) or reverse transcriptase quantitative PCR (messenger RNA). A previously validated senolytic combination, dasatinib and quercetin, (D+Q; or corresponding vehicle) was administered from the time of sham or MI surgery through 28 days later. Experiments were performed blinded to treatment assignment. Burst pacing-induced AF was seen in 100% of aged (18-month old) rats, 87.5% of young MI rats, and 10% of young control (3-month old) rats (P ≤ 0.001 vs. each). Conduction velocity was slower in aged [both left atrium (LA) and right atrium (RA)] and young MI (LA) rats vs. young control rats (P ≤ 0.001 vs. each). Atrial fibrosis was greater in aged (LA and RA) and young MI (LA) vs. young control rats (P < 0.05 for each). Senolytic therapy reduced AF inducibility in MI rats (from 8/9 rats, 89% in MI vehicle, to 0/9 rats, 0% in MI D + Q, P < 0.001) and attenuated LA fibrosis. Double staining suggested that D + Q acts by clearing senescent myofibroblasts and endothelial cells. In human atria, senescence markers were upregulated in older (≥70 years) and long-standing AF patients vs. individuals ≤60 and sinus rhythm controls, respectively. CONCLUSION: Our results point to a potentially significant role of cellular senescence in AF pathophysiology. Modulating cell senescence might provide a basis for novel therapeutic approaches to AF.


Atrial Fibrillation , Atrial Remodeling , Cellular Senescence , Disease Models, Animal , Fibrosis , Heart Atria , Myocardial Infarction , Animals , Atrial Fibrillation/physiopathology , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/genetics , Humans , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Atria/pathology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Male , Quercetin/pharmacology , Senotherapeutics/pharmacology , Age Factors , Female , Aged , Middle Aged , Cardiac Pacing, Artificial
15.
Cardiovasc Res ; 120(4): 345-359, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38091977

AIMS: Recent studies suggest that bioactive mediators called resolvins promote an active resolution of inflammation. Inflammatory signalling is involved in the development of the substrate for atrial fibrillation (AF). The aim of this study is to evaluate the effects of resolvin-D1 on atrial arrhythmogenic remodelling resulting from left ventricular (LV) dysfunction induced by myocardial infarction (MI) in rats. METHODS AND RESULTS: MI was produced by left anterior descending coronary artery ligation. Intervention groups received daily intraperitoneal resolvin-D1, beginning before MI surgery (early-RvD1) or Day 7 post-MI (late-RvD1) and continued until Day 21 post-MI. AF vulnerability was evaluated by performing an electrophysiological study. Atrial conduction was analysed by using optical mapping. Fibrosis was quantified by Masson's trichrome staining and gene expression by quantitative polymerase chain reaction and RNA sequencing. Investigators were blinded to group identity. Early-RvD1 significantly reduced MI size (17 ± 6%, vs. 39 ± 6% in vehicle-MI) and preserved LV ejection fraction; these were unaffected by late-RvD1. Transoesophageal pacing induced atrial tachyarrhythmia in 2/18 (11%) sham-operated rats, vs. 18/18 (100%) MI-only rats, in 5/18 (28%, P < 0.001 vs. MI) early-RvD1 MI rats, and in 7/12 (58%, P < 0.01) late-RvD1 MI rats. Atrial conduction velocity significantly decreased post-MI, an effect suppressed by RvD1 treatment. Both early-RvD1 and late-RvD1 limited MI-induced atrial fibrosis and prevented MI-induced increases in the atrial expression of inflammation-related and fibrosis-related biomarkers and pathways. CONCLUSIONS: RvD1 suppressed MI-related atrial arrhythmogenic remodelling. Early-RvD1 had MI sparing and atrial remodelling suppressant effects, whereas late-RvD1 attenuated atrial remodelling and AF promotion without ventricular protection, revealing atrial-protective actions unrelated to ventricular function changes. These results point to inflammation resolution-promoting compounds as novel cardio-protective interventions with a particular interest in attenuating AF substrate development.


Atrial Fibrillation , Atrial Remodeling , Cardiomyopathies , Myocardial Infarction , Ventricular Dysfunction, Left , Rats , Animals , Atrial Fibrillation/genetics , Atrial Fibrillation/prevention & control , Myocardial Infarction/metabolism , Inflammation/prevention & control , Inflammation/complications , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/prevention & control , Fibrosis
...