Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-28370715

RESUMEN

BACKGROUND: Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. METHODS: Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. KEY RESULTS: L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. CONCLUSIONS & INFERENCES: These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn.


Asunto(s)
Enfermedades Gastrointestinales/metabolismo , Mucosa Intestinal/metabolismo , Limosilactobacillus fermentum , Probióticos/administración & dosificación , Estrés Psicológico/complicaciones , Animales , Animales Recién Nacidos , Colon/metabolismo , Células Epiteliales/metabolismo , Conducta Exploratoria , Femenino , Enfermedades Gastrointestinales/complicaciones , Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/terapia , Privación Materna , Permeabilidad , Ratas Sprague-Dawley , Proteína de la Zonula Occludens-1/metabolismo
2.
Mol Neurobiol ; 53(3): 1540-1550, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25663136

RESUMEN

Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.


Asunto(s)
Envejecimiento/genética , Química Encefálica/genética , Perfilación de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Algoritmos , Animales , Cerebelo/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Neurobiol Dis ; 37(1): 166-76, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19815071

RESUMEN

The aim of this study was to evaluate how endocannabinoids interact with excitotoxic processes both in vitro, using primary neural cell cultures, and in vivo, in the TMEV-IDD model of multiple sclerosis. First, we observed that neuronal cells respond to excitotoxic challenges by the production of endocannabinoid molecules which in turn exerted neuroprotective effects against excitotoxicity. The inhibitor of endocannabinoid uptake, UCM707, protected specifically against AMPA-induced excitotoxicity, by activating CB(1) and CB(2) cannabinoid receptors, as well as the nuclear factor, PPARgamma. This neuroprotective effect was reverted by blocking the glial glutamate transporter, GLT-1. Mice subjected to the model of multiple sclerosis showed a decrease in the expression of GLT-1. UCM707 reversed this loss of GLT-1 and induced a therapeutic effect. Our data indicate that the enhancement of the endocannabinoid tone leads to neuroprotection against AMPA-induced excitotoxicity and provides therapeutic effects in this model of multiple sclerosis.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/toxicidad , Animales , Ácidos Araquidónicos/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/metabolismo , Femenino , Furanos/farmacología , Ratones , Ratones Endogámicos , Ratones Noqueados , N-Metilaspartato/toxicidad , Fármacos Neuroprotectores/farmacología , PPAR gamma/metabolismo , Alcamidas Poliinsaturadas/farmacología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/toxicidad
4.
Mol Cell Neurosci ; 40(2): 258-66, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19059482

RESUMEN

Adhesion molecules are critical players in the regulation of transmigration of blood leukocytes across the blood-brain barrier in multiple sclerosis (MS). Cannabinoids (CBs) are potential therapeutic agents in the treatment of MS, but the mechanisms involved are only partially known. Using a viral model of MS we observed that the cannabinoid agonist WIN55,212-2 administered at the time of virus infection suppresses intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in brain endothelium, together with a reduction in perivascular CD4+ T lymphocytes infiltrates and microglial responses. WIN55,212-2 also interferes with later progression of the disease by reducing symptomatology and neuroinflammation. In vitro data from brain endothelial cell cultures, provide the first evidence of a role of peroxisome proliferator-activated receptors gamma (PPARgamma) in WIN55,212-2-induced downregulation of VCAM-1. This study highlights that inhibition of brain adhesion molecules by WIN55,212-2 might underline its therapeutic effects in MS models by targeting PPAR-gamma receptors.


Asunto(s)
Cannabinoides/agonistas , Cannabinoides/farmacología , Endotelio/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Conducta Animal/fisiología , Benzoxazinas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Cannabinoides/uso terapéutico , Infecciones por Cardiovirus/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endotelio/citología , Endotelio/metabolismo , Femenino , Humanos , Molécula 1 de Adhesión Intercelular/genética , Ratones , Morfolinas/farmacología , Actividad Motora/fisiología , Esclerosis Múltiple/fisiopatología , Naftalenos/farmacología , PPAR gamma/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Theilovirus/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética
5.
Cell Death Differ ; 15(9): 1408-16, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18551132

RESUMEN

Transforming growth factor-beta (TGF-beta) signalling controls a number of cerebral functions and dysfunctions including synaptogenesis, amyloid-beta accumulation, apoptosis and excitotoxicity. Using cultured cortical neurons prepared from either wild type or transgenic mice overexpressing a TGF-beta-responsive luciferase reporter gene (SBE-Luc), we demonstrated a progressive loss of TGF-beta signalling during neuronal maturation and survival. Moreover, we showed that neurons exhibit increasing amounts of the serine protease HtrA1 (high temperature responsive antigen 1) and corresponding cleavage products during both in vitro neuronal maturation and brain development. In parallel of its ability to promote degradation of TGF-beta1, we demonstrated that blockage of the proteolytic activity of HtrA1 leads to a restoration of TGF-beta signalling, subsequent overexpression of the serpin type -1 plasminogen activator inhibitor (PAI-1) and neuronal death. Altogether, we propose that the balance between HtrA1 and TGF-beta could be one of the critical events controlling both neuronal maturation and developmental survival.


Asunto(s)
Encéfalo/enzimología , Neuronas/enzimología , Serina Endopeptidasas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Supervivencia Celular , Células Cultivadas , Serina Peptidasa A1 que Requiere Temperaturas Altas , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia Arriba
6.
Rev. neurol. (Ed. impr.) ; 43(9): 541-548, 1 nov., 2006. ilus, graf
Artículo en Es | IBECS | ID: ibc-050655

RESUMEN

Introducción. El sistema endocannabinoide está constituidopor los receptores cannabinoides, los ligandos endógenos y loselementos enzimáticos implicados en su síntesis y degradación.Objetivo. Describir el estado actual de conocimiento sobre la funcióndel sistema como modulador de los procesos neuroinflamatoriosasociados con enfermedades crónicas como la esclerosis múltiple.Desarrollo. Los cannabinoides se sintetizan y se liberan en demanda y su producción aumenta en situaciones de neuroinflamacióny de daño neural. En este contexto, sus acciones en la microglía y enlos astrocitos se caracterizan por una disminución en la expresión demediadores inflamatorios y de citocinas proinflamatorias. Además,los cannabinoides pueden ejercer acciones neuroprotectoras a travésde diferentes tipos de mecanismos y en modelos experimentalesde esclerosis múltiple atenúan la sintomatología, disminuyen lainflamación y pueden favorecer la remielinización. Conclusiones. Eluso clínico de cannabinoides o agentes farmacológicos que incidenen el sistema endógeno cannabinoide durante la inflamación del sistemanervioso central y en la esclerosis múltiple está actualmentesometido a consideración y debate. El análisis detallado de los resultadosobtenidos en la última década ha permitido establecer que sonmúltiples los mecanismos de actuación de los cannabinoides en patologíasdel sistema nervioso central que cursan con inflamación crónicay ponen de manifiesto el interés del sistema cannabinoide comonueva herramienta terapéutica


Introduction. The endocannabinoid system consists of cannabinoid receptors, endogenous ligands and the enzymaticelements involved in their synthesis and breakdown. Aim. To report on currently held knowledge about the functioning of thesystem as a modulator of the neuroinflammatory processes associated with chronic diseases such as multiple sclerosis.Development. Cannabinoids are synthesised and released on demand and their production increases in times of neuroinflammationand neural damage. In this context then, their actions in the microglial cells and in the astrocytes arecharacterised by a lowered expression of inflammatory mediators and pro-inflammatory cytokines. Furthermore,cannabinoids can play a role as neuroprotectors by means of different types of mechanisms and, in experimental models ofmultiple sclerosis, they slow down the symptoms, reduce inflammation and can favour remyelination. Conclusions. Theclinical use of cannabinoids or pharmacological agents that affect the endogenous cannabinoid system during inflammationof the central nervous system and in multiple sclerosis is currently under consideration and subject to debate. Detailedanalysis of the results obtained over the past decade has made it possible to establish the existence of several mechanisms ofaction of cannabinoids in pathologies affecting the central nervous system that are accompanied by chronic inflammation.Likewise, they also clearly show that the cannabinoid system is an interesting proposal as a new therapeutic tool


Asunto(s)
Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico
7.
Rev Neurol ; 43(9): 541-8, 2006.
Artículo en Español | MEDLINE | ID: mdl-17072810

RESUMEN

INTRODUCTION: The endocannabinoid system consists of cannabinoid receptors, endogenous ligands and the enzymatic elements involved in their synthesis and breakdown. AIM: To report on currently held knowledge about the functioning of the system as a modulator of the neuroinflammatory processes associated with chronic diseases such as multiple sclerosis. DEVELOPMENT: Cannabinoids are synthesised and released on demand and their production increases in times of neuroinflammation and neural damage. In this context then, their actions in the microglial cells and in the astrocytes are characterised by a lowered expression of inflammatory mediators and pro-inflammatory cytokines. Furthermore, cannabinoids can play a role as neuroprotectors by means of different types of mechanisms and, in experimental models of multiple sclerosis, they slow down the symptoms, reduce inflammation and can favour remyelination. CONCLUSIONS: The clinical use of cannabinoids or pharmacological agents that affect the endogenous cannabinoid system during inflammation of the central nervous system and in multiple sclerosis is currently under consideration and subject to debate. Detailed analysis of the results obtained over the past decade has made it possible to establish the existence of several mechanisms of action of cannabinoids in pathologies affecting the central nervous system that are accompanied by chronic inflammation. Likewise, they also clearly show that the cannabinoid system is an interesting proposal as a new therapeutic tool.


Asunto(s)
Esclerosis Múltiple/inmunología , Receptores de Cannabinoides/fisiología , Animales , Humanos , Inflamación/inmunología , Esclerosis Múltiple/tratamiento farmacológico , Neuroglía/inmunología
8.
J Biol Chem ; 276(49): 46243-50, 2001 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-11544249

RESUMEN

Transforming growth factor-beta (TGF-beta) signaling requires a ligand-dependent interaction of TGF-beta receptors Tau beta R-I and Tau beta R-II. It has been previously demonstrated that a soluble TGF-beta type II receptor could be used as a TGF-beta antagonist. Here we have generated and investigated the biochemical and signaling properties of a soluble TGF-beta type I receptor (Tau beta RIs-Fc). As reported for the wild-type receptor, the soluble Tau beta R-I does not bind TGF-beta 1 on its own. Surprisingly, in the absence of TGF-beta1, the Tau beta RIs-Fc mimicked TGF-beta 1-induced transcriptional and growth responses in mink lung epithelial cells (Mv1Lu). Signaling induced by the soluble TGF-beta type I receptor is mediated via the obligatory presence of both TGF-beta type I and type II receptors at the cell surface since no signal was observed in Mv1Lu-derivated mutants for TGF-beta receptors R-1B and DR-26. The comparison between the structures of TGF-betas and a three-dimensional model of the extracellular domain of Tau beta RI has shown that five residues of the supposed binding site of TGF-beta 1 (Lys(31), His(34), Glu(5), Tyr(91), and Lys(94)) were found with equivalent biochemical properties and similar spatial positions.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta/fisiología , Factor de Crecimiento Transformador beta/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , División Celular/fisiología , Línea Celular , Cricetinae , Cartilla de ADN , Inmunoglobulina G/metabolismo , Visón , Datos de Secuencia Molecular , Conformación Proteica , Receptores de Factores de Crecimiento Transformadores beta/química , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Solubilidad , Factor de Crecimiento Transformador beta/metabolismo
9.
J Cereb Blood Flow Metab ; 21(7): 820-7, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11435794

RESUMEN

There has been an increasing interest in recent years in the evaluation of the neuronal and glial responses to ischemic insult. Some cytokines, including transforming growth factor-beta (TGF-beta), that are overexpressed after experimental stroke in rodents are thought to be implicated in the neuronal processes that lead to necrosis. Thus, such cytokines could predict tissue fate after stroke in humans, although data are currently sparse for gyrencephalic species. The current study addressed the expression pattern of TGF-beta1 in a nonhuman primate model of middle cerebral artery occlusion. Focal permanent ischemia was induced for 1 or 7 days in 6 baboons and the following investigations were undertaken: cerebral oxygen metabolism (CMRO2) positron emission tomography studies, magnetic resonance imaging, postmortem histology, and reverse transcription-polymerase chain reaction. The aim of the current study was to correlate the expression of TGF-beta1 to the underlying metabolic and histologic state of the threatened cerebral parenchyma. The authors evidenced increased TGF-beta1 mRNA levels (up to 25-fold) in those regions displaying a moderate (20% to 49%) reduction in CMRO2. The current findings suggest that the greatly enhanced expression of TGF-beta1 in the penumbral zones that surround tissue destined to infarction may represent a robust index of potentially salvageable brain. The current investigation, in the nonhuman primate, strengthens the authors' hypothesis, derived from rodent models, that TGF-beta1 may be involved in the physiopathology of human stroke.


Asunto(s)
Biomarcadores , Isquemia Encefálica/metabolismo , Expresión Génica , Neuronas/fisiología , Factor de Crecimiento Transformador beta/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Imagen por Resonancia Magnética , Masculino , Arteria Cerebral Media/cirugía , Consumo de Oxígeno , Papio , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tomografía Computarizada de Emisión
10.
J Neurosci ; 21(9): 3024-33, 2001 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11312287

RESUMEN

The glial cell line-derived neurotrophic factor (GDNF) is first characterized for its trophic activity on dopaminergic neurons. Recent data suggested that GDNF could modulate the neuronal death induced by ischemia. The purpose of this study was to characterize the influence of GDNF on cultured cortical neurons subjected to two paradigms of injury (necrosis and apoptosis) that have been identified during cerebral ischemia and to determine the molecular mechanisms involved. First, we demonstrated that both neurons and astrocytes express the mRNA and the protein for GDNF and its receptor complex (GFRalpha-1 and c-Ret). Next, we showed that the application of recombinant human GDNF to cortical neurons and astrocytes induces the activation of the MAP kinase (MAPK) pathway, as visualized by an increase in the phosphorylated forms of extracellular signal-regulated kinases (ERKs). Thereafter, we demonstrated that GDNF fails to prevent apoptotic neuronal death but selectively attenuates slowly triggered NMDA-induced excitotoxic neuronal death via a direct effect on cortical neurons. To further characterize the neuroprotective mechanisms of GDNF against NMDA-mediated neuronal death, we showed that a pretreatment with GDNF reduces NMDA-induced calcium influx. This effect likely results from a reduction of NMDA receptor activity rather than an enhanced buffering or extrusion capacity for calcium. Finally, we also demonstrated that an ERKs activation pathway is necessary for GDNF-mediated reduction of the NMDA-induced calcium response. Together, these results describe a novel mechanism by which the activation of MAPK induced by GDNF modulates NMDA receptor activity, a mechanism that could be responsible for the neuroprotective effect of GDNF in acute brain injury.


Asunto(s)
Calcio/metabolismo , Proteínas de Drosophila , Sistema de Señalización de MAP Quinasas/fisiología , N-Metilaspartato/metabolismo , Factores de Crecimiento Nervioso , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/metabolismo , Animales , Apoptosis/efectos de los fármacos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Isquemia Encefálica/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Quelantes , Colorantes Fluorescentes , Factor Neurotrófico Derivado de la Línea Celular Glial , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , Glicosilfosfatidilinositoles/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , N-Metilaspartato/antagonistas & inhibidores , N-Metilaspartato/toxicidad , Necrosis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Oxidación-Reducción/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ret , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
11.
Nat Med ; 7(1): 59-64, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11135617

RESUMEN

Tissue-plasminogen activator (t-PA) is now available for the treatment of thrombo-embolic stroke but adverse effects have been reported in some patients, particularly hemorrhaging. In contrast, the results of animal studies have indicated that t-PA could increase neuronal damage after focal cerebral ischemia. Here we report for the first time that t-PA potentiates signaling mediated by glutamatergic receptors by modifying the properties of the N-methyl-D-aspartate (NMDA) receptor. When depolarized, cortical neurons release bio-active t-PA that interacts with and cleaves the NR1 subunit of the NMDA receptor. Moreover, the treatment with recombinant t-PA leads to a 37% increase in NMDA-stimulated fura-2 fluorescence, which may reflect an increased NMDA-receptor function. These results were confirmed in vivo by the intrastriatal injection of recombinant-PA, which potentiated the excitotoxic lesions induced by NMDA. These data provide insight into the regulation of NMDA-receptor-mediated signaling and could initiate therapeutic strategies to improve the efficacy of t-PA treatment in man.


Asunto(s)
Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Activador de Tejido Plasminógeno/metabolismo , Animales , Calcio/metabolismo , Muerte Celular , Hidrólisis , Transporte Iónico , Potenciales de la Membrana , Neuronas/metabolismo , Neuronas/fisiología
12.
J Cereb Blood Flow Metab ; 20(6): 956-66, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10894179

RESUMEN

In the brain, the expression of the pleiotropic cytokine interleukin-6 (IL-6) is enhanced in various chronic or acute central nervous system disorders. However, the significance of IL-6 production in such neuropathologic states remains controversial. The present study investigated the role of IL-6 after cerebral ischemia. First, the authors showed that focal cerebral ischemia in rats early up-regulated the expression of IL-6 mRNA, without affecting the transcription of its receptors (IL-6Ralpha and gp130). Similarly, the striatal injection of N-methyl-D-aspartate (NMDA) in rats, a paradigm of excitotoxic injury, activated the expression of IL-6 mRNA. The involvement of glutamatergic receptor activation was further investigated by incubating cortical neurons with NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA). NMDA and ionomycin (a calcium ionophore) up-regulated IL-6 mRNA, suggesting that neurons may produce IL-6 in response to the calcium influx mediated through NMDA receptors. The potential role of IL-6 during ischemic/excitotoxic insults was then studied by testing the effect of IL-6 against apoptotic or excitotoxic challenges in cortical cultures. IL-6 did not prevent serum deprivation- or staurosporine-induced apoptotic neuronal death, or AMPA/kainate-mediated excitotoxicity. However, in both mixed and pure neuronal cultures, IL-6 dose-dependently protected neurons against NMDA toxicity. This effect was blocked by a competitive inhibitor of IL-6. Overall, the results suggest that the up-regulation of IL-6 induced by cerebral ischemia could represent an endogenous neuroprotective mechanism against NMDA receptor-mediated injury.


Asunto(s)
Interleucina-6/inmunología , Ataque Isquémico Transitorio/inmunología , Fármacos Neuroprotectores/inmunología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Astrocitos/citología , Química Encefálica/efectos de los fármacos , Química Encefálica/inmunología , Células Cultivadas , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Corteza Cerebral/inmunología , Agonistas de Aminoácidos Excitadores/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Infarto de la Arteria Cerebral Media/inmunología , Interleucina-6/genética , Ionomicina/farmacología , Ionóforos/farmacología , Masculino , N-Metilaspartato/farmacología , Neuronas/química , Neuronas/citología , Neuronas/inmunología , Neurotoxinas/farmacología , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Receptores AMPA/fisiología , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/inmunología , Receptores de Ácido Kaínico/fisiología , Transcripción Genética/inmunología
13.
J Cereb Blood Flow Metab ; 19(12): 1345-53, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10598939

RESUMEN

Various studies describe increased concentrations of transforming growth factor-beta (TGF-beta) in brain tissue after acute brain injury. However, the role of endogenously produced TGF-beta after brain damage to the CNS remains to be clearly established. Here, the authors examine the influence of TGF-beta produced after an episode of cerebral ischemia by injecting a soluble TGF-beta type II receptor fused with the Fc region of a human immunoglobulin (TbetaRIIs-Fc). First, this molecular construct was characterized as a selective antagonist of TGF-beta. Then, the authors tested its ability to reverse the effect of TGF-beta1 on excitotoxic cell death in murine cortical cell cultures. The addition of 1 microg/mL of TbetaRIIs-Fc to the exposure medium antagonized the neuroprotective activity of TGF-beta1 in N-methyl-D-aspartate (NMDA)-induced excitotoxic cell death. These results are consistent with the hypothesis that TGF-beta1 exerts a negative modulatory action on NMDA receptor-mediated excitotoxicity. To determine the role of TGF-beta1 produced in response to brain damage, the authors used a model of an excitotoxic lesion induced by the intrastriatal injection of 75 nmol of NMDA in the presence of 1.5 microg of TbetaRIIs-Fc. The intrastriatal injection of NMDA was demonstrated to induce an early upregulation of the expression of TGF-beta1 mRNA. Furthermore, when added to the excitotoxin, TbetaRIIs-Fc increased (by 2.2-fold, P < 0.05) the lesion size. These observations were strengthened by the fact that an intracortical injection of TbetaRIIs-Fc in rats subjected to a 30-minute reversible cerebral focal ischemia aggravated the volume of infarction. In the group injected with the TGF-beta1 antagonist, a 3.5-fold increase was measured in the infarction size (43.3 +/- 9.5 versus 152.8 +/- 46.3 mm3; P < 0.05). In conclusion, by antagonizing the influence of TGF-beta in brain tissue subjected to excitotoxic or ischemic lesion, the authors markedly exacerbated the resulting extent of necrosis. These results suggest that, in response to such insults, brain tissue responds by the synthesis of a neuroprotective cytokine, TGF-beta1, which is involved in the limitation of the extent of the injury. The pharmacologic potentiation of this endogenous defensive mechanism might represent an alternative and novel strategy for the therapy of hypoxic-ischemic cerebral injury.


Asunto(s)
Ataque Isquémico Transitorio/fisiopatología , Neuronas/citología , Fármacos Neuroprotectores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/fisiología , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Infarto Cerebral/patología , Infarto Cerebral/fisiopatología , Infarto Cerebral/prevención & control , Feto , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fragmentos Fc de Inmunoglobulinas , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/prevención & control , Masculino , Ratones , Arteria Cerebral Media , N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas , Ratas , Ratas Sprague-Dawley , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Proteínas Recombinantes de Fusión/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Crecimiento Transformador beta/genética
14.
FASEB J ; 13(11): 1315-24, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10428756

RESUMEN

The tissue type plasminogen activator (t-PA) is a serine protease that is involved in neuronal plasticity and cell death induced by excitotoxins and ischemia in the brain. t-PA activity in the central nervous system is regulated through the activation of serine protease inhibitors (serpins) such as the plasminogen activator inhibitor (PAI-1), the protease nexin-1 (PN-1), and neuroserpin (NSP). Recently we demonstrated in vitro that PAI-1 produced by astrocytes mediates the neuroprotective effect of the transforming growth factor-beta1 (TGF-beta1) in NMDA-induced neuronal cell death. To investigate whether serpins may be involved in neuronal cell death after cerebral ischemia, we determined, by using semiquantitative RT-PCR and in situ hybridization, that focal cerebral ischemia in mice induced a dramatic overexpression of PAI-1 without any effect on PN-1, NSP, or t-PA. Then we showed that although the expression of PAI-1 is restricted to astrocytes, PN-1, NSP, and t-PA are expressed in both neurons and astrocytes. Moreover, by using semiquantitative RT-PCR and Western blotting, we observed that only the expression of PAI-1 was modulated by TGF-beta1 treatment via a TGF-beta-inducible element contained in the PAI-1 promoter (CAGA box). Finally, we compared the specificity of TGF-beta1 action with other members of the TGF-beta family by using luciferase reporter genes. These data show that TGF-beta and activin were able to induce the overexpression of PAI-1 in astrocytes, but that bone morphogenetic proteins, glial cell line-derived neutrophic factor, and neurturin did not. These results provide new insights into the regulation of the serpins/t-PA axis and the mechanism by which TGF-beta may be neuroprotective.


Asunto(s)
Isquemia Encefálica/metabolismo , Proteínas Portadoras/metabolismo , Neuropéptidos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Serpinas/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Precursor de Proteína beta-Amiloide , Animales , Astrocitos/metabolismo , Astrocitos/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Proteínas Portadoras/genética , Muerte Celular/genética , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Neuronas/patología , Neuropéptidos/genética , Inhibidor 1 de Activador Plasminogénico/genética , Nexinas de Proteasas , Receptores de Superficie Celular , Serpinas/genética , Activador de Tejido Plasminógeno/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/farmacología , Neuroserpina
15.
FASEB J ; 12(15): 1683-91, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9837858

RESUMEN

Serine proteases play a key role in the fundamental biology of the central nervous system (CNS), and recent data suggest their involvement in the pathophysiology of neurodegenerative diseases. Little is known about the physiological regulation of these proteases in the CNS. Among the multiple growth factors present in the brain, transforming growth factor beta1 (TGF-beta1) has been described as an injury-related growth factor. However, its beneficial or deleterious role remains unclear. In the present study, we investigated the influence of TGF-beta1 in apoptosis and necrosis, two mechanisms involved in ischemic neuronal death. We show that TGF-beta1 exerts a neuroprotective role restricted to necrosis induced by N-methyl-D-aspartate. This effect is observable only in the obligatory presence of TGF-beta1-responsive astrocytes. We demonstrate that this neuroprotective activity is mediated through an up-regulation of a serine protease inhibitor (PAI-1) in astrocytes. These results underline the involvement of serine proteases and extracellular matrix components such as the PAI-1/t-PA axis in the excitotoxic cascade. Moreover, regardless of the underlying mechanisms of t-PA involvement in excitotoxic injury, our observations might warn against the use of tissular plasminogen activator as an alternative therapy for the treatment of hypoxic-ischemic injury in the brain.


Asunto(s)
Astrocitos/metabolismo , Fármacos Neuroprotectores/farmacología , Inhibidores de Serina Proteinasa/biosíntesis , Factor de Crecimiento Transformador beta/farmacología , Animales , Astrocitos/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Ratones , N-Metilaspartato/farmacología , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Activador de Tejido Plasminógeno/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...