Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(13): e2117640119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35320039

RESUMEN

KCNQ2 and KCNQ3 channels are associated with multiple neurodevelopmental disorders and are also therapeutic targets for neurological and neuropsychiatric diseases. For more than two decades, it has been thought that most KCNQ channels in the brain are either KCNQ2/3 or KCNQ3/5 heteromers. Here, we investigated the potential heteromeric compositions of KCNQ2-containing channels. We applied split-intein protein trans-splicing to form KCNQ2/5 tandems and coexpressed these with and without KCNQ3. Unexpectedly, we found that KCNQ2/5 tandems form functional channels independent of KCNQ3 in heterologous cells. Using mass spectrometry, we went on to demonstrate that KCNQ2 associates with KCNQ5 in native channels in the brain, even in the absence of KCNQ3. Additionally, our functional heterologous expression data are consistent with the formation of KCNQ2/3/5 heteromers. Thus, the composition of KCNQ channels is more diverse than has been previously recognized, necessitating a re-examination of the genotype/phenotype relationship of KCNQ2 pathogenic variants.


Asunto(s)
Canales de Potasio KCNQ , Canal de Potasio KCNQ3 , Animales , Encéfalo/metabolismo , Genotipo , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Empalme de Proteína
2.
Mol Pharmacol ; 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504241

RESUMEN

Recent studies identified HN38 as a novel KCNQ2 channel inhibitor. However, to date no study has carefully examined HN38 in regards to its mechanism of action or determined whether it inhibits KCNQ2/3 channels. To address these questions, we used heterologous expression of human KCNQ2/3 channels in HEK293T cells. Consistent with previous reports, we found that HN38 almost completely blocked KCNQ2 channel activity. This inhibition was independent of the presence of the KCNQ1-5 auxiliary neuronal subunit beta-secretase 1 (BACE-1). Similar to its parent compound, retigabine, HN38 required the presence of KCNQ2 tryptophan W236 for inhibition. Surprisingly, we found that HN38 maximally inhibited KCNQ2/3 channels, as well as the KCNQ2/3-mediated M-current in CA1 pyramidal neurons, by approximately 40%. This incomplete block of KCNQ2/3 channels by HN38 appears to be partially due to the conformation of the KCNQ2/3 outer vestibule and in particular the outer turret lysine 259 of KCNQ3 channels. We conclude that the KCNQ3 outer vestibule conformation regulates the ability of blockers, like HN38 as well as XE991, to inhibit KCNQ2/3 channels, which should be considered for the design of new KCNQ2/3 channels compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA