Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39229052

RESUMEN

Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, facilitating expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in Aedes sierrensis, a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population. We found pervasive evidence of heritable genetic variation in acute heat tolerance, which phenotypically trades off with tolerance to prolonged heat exposure. A simple evolutionary model based on our data shows that the estimated maximum rate of evolutionary adaptation in mosquito heat tolerance typically exceeds that of projected climate warming under idealized conditions. Our findings indicate that natural mosquito populations may have the potential to track projected warming via genetic adaptation. Prior climate-based projections may thus underestimate the range of mosquito and mosquito-borne disease distributions under future climate conditions.

2.
Evolution ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252584

RESUMEN

Across the tree of life, species have repeatedly evolved similar phenotypes. While well-studied for ecological traits, there is also evidence for recurrent evolution of sexually selected traits. Swordtail fish (Xiphophorus) are a classic model system for studying sexual selection, and female Xiphophorus exhibit strong mate preferences for large male body size and a range of sexually dimorphic ornaments. Interestingly, sexually selected traits have also been lost multiple times in the genus. However, there has been uncertainty over the number of losses of ornamentation and large body size because phylogenetic relationships between species in this group have historically been controversial, partially due to prevalent gene flow. Here, we use whole-genome sequencing approaches to re-examine phylogenetic relationships within a Xiphophorus clade that varies in the presence and absence of sexually selected traits. Using wild-caught individuals, we determine the phylogenetic placement of a small, unornamented species, X. continens, confirming an additional loss of ornamentation and large body size in the clade. With these revised phylogenetic relationships, we analyze evidence for coevolution between body size and other sexually selected traits using phylogenetic comparative methods. These results provide insights into the evolutionary pressures driving the recurrent loss of suites of sexually selected traits.

3.
Nat Commun ; 15(1): 6609, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098897

RESUMEN

Hybridization has been recognized to play important roles in evolution, however studies of the genetic consequence are still lagging behind in vertebrates due to the lack of appropriate experimental systems. Fish of the genus Xiphophorus are proposed to have evolved with multiple ancient and ongoing hybridization events. They have served as an informative research model in evolutionary biology and in biomedical research on human disease for more than a century. Here, we provide the complete genomic resource including annotations for all described 26 Xiphophorus species and three undescribed taxa and resolve all uncertain phylogenetic relationships. We investigate the molecular evolution of genes related to cancers such as melanoma and for the genetic control of puberty timing, focusing on genes that are predicted to be involved in pre-and postzygotic isolation and thus affect hybridization. We discovered dramatic size-variation of some gene families. These persisted despite reticulate evolution, rapid speciation and short divergence time. Finally, we clarify the hybridization history in the entire genus settling disputed hybridization history of two Southern swordtails. Our comparative genomic analyses revealed hybridization ancestries that are manifested in the mosaic fused genomes and show that hybridization often preceded speciation.


Asunto(s)
Ciprinodontiformes , Evolución Molecular , Especiación Genética , Hibridación Genética , Filogenia , Animales , Ciprinodontiformes/genética , Ciprinodontiformes/clasificación , Genómica/métodos , Genoma/genética
4.
PLoS Biol ; 22(8): e3002742, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39186811

RESUMEN

Over the past 2 decades, biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common-not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past approximately 40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni × X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.


Asunto(s)
Ciprinodontiformes , Evolución Molecular , Genoma , Hibridación Genética , Animales , Ciprinodontiformes/genética , Ciprinodontiformes/clasificación , Genoma/genética , Selección Genética
5.
bioRxiv ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260540

RESUMEN

Hybridization has been recognized as an important driving force for evolution, however studies of the genetic consequence and its cause are still lagging behind in vertebrates due to the lack of appropriate experimental systems. Fish of the central American genus Xiphophorus were proposed to have evolved with multiple ancient and ongoing hybridization events, and served as a valuable research model in evolutionary biology and in biomedical research on human disease for more than a century. Here, we provide the complete genome resource and its annotation of all 26 Xiphophorus species. On this dataset we resolved the so far conflicting phylogeny. Through comparative genomic analyses we investigated the molecular evolution of genes related to melanoma, for a main sexually selected trait and for the genetic control of puberty timing, which are predicted to be involved in pre-and postzygotic isolation and thus to influence the probability of interspecific hybridization in Xiphophorus . We demonstrate dramatic size-variation of some gene families across species, despite the reticulate evolution and short divergence time. Finally, we clarify the hybridization history in the genus Xiphophorus genus, settle the long dispute on the hybridization origin of two Southern swordtails, highlight hybridizations precedes speciation, and reveal the distribution of hybridization ancestry remaining in the fused genome.

6.
Mol Ecol Resour ; 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36872490

RESUMEN

Genomics can play important roles in biodiversity conservation, especially for Extinct-in-the-Wild species where genetic factors greatly influence risk of total extinction and probability of successful reintroductions. The Christmas Island blue-tailed skink (Cryptoblepharus egeriae) and Lister's gecko (Lepidodactylus listeri) are two endemic reptile species that went extinct in the wild shortly after the introduction of a predatory snake. After a decade of management, captive populations have expanded from 66 skinks and 43 geckos to several thousand individuals; however, little is known about patterns of genetic variation in these species. Here, we use PacBio HiFi long-read and Hi-C sequencing to generate highly contiguous reference genomes for both reptiles, including the XY chromosome pair in the skink. We then analyse patterns of genetic diversity to infer ancient demography and more recent histories of inbreeding. We observe high genome-wide heterozygosity in the skink (0.007 heterozygous sites per base-pair) and gecko (0.005), consistent with large historical population sizes. However, nearly 10% of the blue-tailed skink reference genome falls within long (>1 Mb) runs of homozygosity (ROH), resulting in homozygosity at all major histocompatibility complex (MHC) loci. In contrast, we detect a single ROH in Lister's gecko. We infer from the ROH lengths that related skinks may have established the captive populations. Despite a shared recent extinction in the wild, our results suggest important differences in these species' histories and implications for management. We show how reference genomes can contribute evolutionary and conservation insights, and we provide resources for future population-level and comparative genomic studies in reptiles.

7.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187753

RESUMEN

Over the past two decades, evolutionary biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common - not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past ~40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni×X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.

8.
Curr Biol ; 32(16): R865-R868, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998591

RESUMEN

Biologists have forever sought to understand how species arise and persist. Historically, species that rarely interbreed, or are reproductively isolated, were considered the norm, while those with incomplete reproductive isolation were considered less common. Over the last few decades, advances in genomics have transformed our understanding of the frequency of gene flow between species and with it our ideas about reproductive isolation in nature. These advances have uncovered a rich and often complicated history of genetic exchange between species - demonstrating that such genetic introgression is an important evolutionary process widespread across the tree of life (Figure 1).


Asunto(s)
Hibridación Genética , Aislamiento Reproductivo , Evolución Biológica , Flujo Génico , Genómica
9.
PLoS Genet ; 18(1): e1009914, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085234

RESUMEN

Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.


Asunto(s)
Ciprinodontiformes/genética , Proteínas de Peces/genética , Animales , Cruzamientos Genéticos , Evolución Molecular , Genoma , Hibridación Genética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA