Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
Environ Sci Technol ; 57(49): 20615-20626, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38019574

Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples.


Minerals , Soil , Soil/chemistry , Minerals/chemistry , Carbon , Microscopy, Electron, Transmission
2.
Chemosphere ; 340: 139684, 2023 Nov.
Article En | MEDLINE | ID: mdl-37532201

Trace minerals such as copper (Cu) and zinc (Zn) are animal nutrition supplements necessary for livestock health and breeding performance, yet they also have environmental impacts via animal excretion. Here we investigated changes in Cu and Zn speciation from the feed additive to the broiler excreta stages. The aim of this study was to assess whether different Cu and Zn feed additives induce different Cu and Zn speciation patterns, and to determine the extent to which this speciation is preserved throughout the feed-animal-excreta system. Synchrotron-based X-ray absorption spectroscopy (XAS) was used for this investigation. The principal findings were: (i) in feed, Cu and Zn speciation changed rapidly from the feed additive signature (Cu and Zn oxides or Cu and Zn sulfates) to Cu and Zn organic complexes (Cu phytate and Zn phytate). (ii) in the digestive tract, we showed that Cu and Zn phytate were major Cu and Zn species; Cu sulfide and Zn amorphous phosphate species were detected but remained minor species. (iii) in fresh excreta, Cu sulfide and Zn amorphous phosphate were major species. These results should help to: (i) enhance the design of future research studies comparing different feed additive performances; (ii) assess Cu and Zn bioavailability in the digestive tract; (iii) gain further insight into the fate of Cu and Zn in cultivated soils when poultry manure is used as fertilizer.


Phytic Acid , Zinc , Animals , Zinc/chemistry , X-Ray Absorption Spectroscopy , Chickens , Copper/chemistry , Phosphates , Sulfides
3.
Environ Sci Technol ; 56(23): 16838-16847, 2022 12 06.
Article En | MEDLINE | ID: mdl-36350260

Soil is a major receptor of manufactured nanomaterials (NMs) following unintentional releases or intentional uses. Ceria NMs have been shown to undergo biotransformation in plant and soil organisms with a partial Ce(IV) reduction into Ce(III), but the influence of environmentally widespread soil bacteria is poorly understood. We used high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS) with an unprecedented detection limit to assess Ce speciation in a model soil bacterium (Pseudomonas brassicacearum) exposed to CeO2 NMs of different sizes and shapes. The findings revealed that the CeO2 NM's size drives the biotransformation process. No biotransformation was observed for the 31 nm CeO2 NMs, contrary to 7 and 4 nm CeO2 NMs, with a Ce reduction of 64 ± 14% and 70 ± 15%, respectively. This major reduction appeared quickly, from the early exponential bacterial growth phase. Environmentally relevant organic acid metabolites secreted by Pseudomonas, especially in the rhizosphere, were investigated. The 2-keto-gluconic and citric acid metabolites alone were able to induce a significant reduction in 4 nm CeO2 NMs. The high biotransformation measured for <7 nm NMs would affect the fate of Ce in the soil and biota.


Cerium , Metal Nanoparticles , Nanostructures , Particle Size , Cerium/chemistry , Soil/chemistry , Metal Nanoparticles/chemistry , Bacteria
4.
Environ Sci Technol ; 56(23): 16831-16837, 2022 12 06.
Article En | MEDLINE | ID: mdl-36394535

Nanosized zinc sulfides (nano-ZnS) have size-dependent and tunable physical and chemical properties that make them useful for a variety of technological applications. For example, structural changes, especially caused by strain, are pronounced in nano-ZnS < 5 nm in size, the size range typical of incidental nano-ZnS that form in the environment. Previous research has shown how natural organic matter impacts the physical properties of nano-ZnS but was mostly focused on their aggregation state. However, the specific organic molecules and the type of functional groups that are most important for controlling the nano-ZnS size and strain remain unclear. This study examined the size-dependent strain of nano-ZnS synthesized in the presence of serine, cysteine, glutathione, histidine, and acetate. Synchrotron total scattering pair distribution function analysis was used to determine the average crystallite size and strain. Among the different organic molecules tested, those containing a thiol group were shown to affect the particle size and size-induced strain most strongly when added during synthesis but significantly reduced the particle strain when added to as-formed nano-ZnS. The same effects are useful to understand the properties and behavior of natural nano-ZnS formed as products of microbial activity, for example, in reducing environments, or of incidental nano-ZnS formed in organic wastes.


Nanoparticles , Zinc Compounds , Zinc Compounds/analysis , Zinc Compounds/chemistry , Sulfides/chemistry , Nanoparticles/chemistry , Particle Size
5.
Sci Total Environ ; 848: 157779, 2022 Nov 20.
Article En | MEDLINE | ID: mdl-35926606

The geochemistry of copper (Cu) is generally assumed to be controlled by organic matter in soils. However, the role of clay and iron oxide minerals may be understated. Soil density fractionation, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS) were combined to assess the long-term behavior of Cu in an agricultural soil subject to organic waste application. Two unprecedented molecular environments of natural Cu (i.e. Cu inherited from the parent rock) in soils are reported: Cu dimer in the interlayer of vermiculite and Cu structurally incorporated within hematite. Moreover, the soil naturally containing Cu-vermiculite, Cu-hematite, but also Cu-kaolinite (Cutotal = 122 mg·kg-1) was amended over 11 years with Cu-rich pig slurry in which Cu was 100 % Cu(I) sulfide. Natural Cu associated with clay and iron oxide minerals persisted in the amended soil, but the exogenous Cu(I) sulfide was unstable. The increase in Cu concentration in the amended soil to 174 mg·kg-1 was accounted for the increase of Cu sorbed to kaolinite and Cu bound to organic matter. These results are important for better understanding the natural occurrence of Cu in soils and for assessing the environmental impacts of organic waste recycling in agricultural fields.


Soil Pollutants , Soil , Aluminum Silicates , Animals , Clay , Copper/analysis , Ferric Compounds , Kaolin , Minerals/chemistry , Soil/chemistry , Soil Pollutants/analysis , Sulfides , Swine
6.
Environ Pollut ; 292(Pt B): 118414, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34728325

Incidental zinc sulfide nanoparticles (nano-ZnS) are spread on soils through organic waste (OW) recycling. Here we performed soil incubations with synthetic nano-ZnS (3 nm crystallite size), representative of the form found in OW. We used an original set of techniques to reveal the fate of nano-ZnS in two soils with different properties. 68Zn tracing and nano-DGT were combined during soil incubation to discriminate the available natural Zn from the soil, and the available Zn from the dissolved nano-68ZnS. This combination was crucial to highlight the dissolution of nano-68ZnS as of the third day of incubation. Based on the extended X-ray absorption fine structure, we revealed faster dissolution of nano-ZnS in clayey soil (82% within 1 month) than in sandy soil (2% within 1 month). However, the nano-DGT results showed limited availability of Zn released by nano-ZnS dissolution after 1 month in the clayey soil compared with the sandy soil. These results highlighted: (i) the key role of soil properties for nano-ZnS fate, and (ii) fast dissolution of nano-ZnS in clayey soil. Finally, the higher availability of Zn in the sandy soil despite the lower nano-ZnS dissolution rate is counterintuitive. This study demonstrated that, in addition to nanoparticle dissolution, it is also essential to take the availability of released ions into account when studying the fate of nanoparticles in soil.


Nanoparticles , Soil Pollutants , Isotopes , Soil , Soil Pollutants/analysis , Sulfides , X-Ray Absorption Spectroscopy , Zinc/analysis , Zinc Compounds
7.
Front Microbiol ; 12: 667043, 2021.
Article En | MEDLINE | ID: mdl-34054773

Even though organic waste (OW) recycling via anaerobic digestion (AD) and composting are increasingly used, little is known about the impact of OW origin (fecal matters and food and vegetable wastes) on the end products' bacterial contents. The hypothesis of a predictable bacterial community structure in the end products according to the OW origin was tested. Nine OW treatment plants were selected to assess the genetic structure of bacterial communities found in raw OW according to their content in agricultural and urban wastes and to estimate their modifications through AD and composting. Two main bacterial community structures among raw OWs were observed and matched a differentiation according to the occurrences of urban chemical pollutants. Composting led to similar 16S rRNA gene OTU profiles whatever the OW origin. With a significant shift of about 140 genera (representing 50% of the bacteria), composting was confirmed to largely shape bacterial communities toward similar structures. The enriched taxa were found to be involved in detoxification and bioremediation activities. This process was found to be highly selective and favorable for bacterial specialists. Digestates showed that OTU profiles differentiated into two groups according to their relative content in agricultural (manure) and urban wastes (mainly activated sludge). About one third of the bacterial taxa was significantly affected by AD. In digestates of urban OW, this sorting led to an enrichment of 32 out of the 50 impacted genera, while for those produced from agricultural or mixed urban/agricultural OW (called central OW), a decay of 54 genera over 60 was observed. Bacteria from activated sludge appeared more fit for AD than those of other origins. Functional inferences showed AD enriched genera from all origins to share similar functional traits, e.g., chemoheterotrophy and fermentation, while being often taxonomically distinct. The main functional traits among the dominant genera in activated sludge supported a role in AD. Raw OW content in activated sludge was found to be a critical factor for predicting digestate bacterial contents. Composting generated highly predictable and specialized community patterns whatever the OW origin. AD and composting bacterial changes were driven by functional traits selected by physicochemical factors such as temperature and chemical pollutants.

8.
Environ Pollut ; 279: 116897, 2021 Jun 15.
Article En | MEDLINE | ID: mdl-33774364

It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.


Soil Pollutants , Solanum melongena , Solanum nigrum , Biodegradation, Environmental , Cadmium/analysis , Plant Roots/chemistry , Soil Pollutants/analysis , Sulfur , X-Ray Absorption Spectroscopy
9.
Environ Sci Technol ; 54(19): 12034-12041, 2020 10 06.
Article En | MEDLINE | ID: mdl-32852945

Recycling of organic waste (OW) as fertilizer on farmland is a widespread practice that fosters sustainable development via resource reuse. However, the advantages of OW fertilization should be weighed against the potentially negative environmental impacts due to the presence of contaminants such as zinc (Zn). Current knowledge on the parameters controlling the environmental fate of Zn following OW application on cultivated soils is scant. We addressed this shortcoming by combining soil column experiments and Zn speciation characterization in OWs and amended soils. Soil column experiments were first carried out using two contrasted soils (sandy soil and sandy clay loam) that were amended with sewage sludge or poultry manure and cropped with lettuce. The soil columns were irrigated with identical amounts of water twice a week, and the leachates collected at the column outlet were monitored and analyzed. This scheme (OW application and lettuce crop cycle) was repeated for each treatment. Lettuce yields and Zn uptake were assessed at the end of each cycle. The soil columns were dismantled and seven soil layers were sampled and analyzed at the end of the second cycle (total experiment time: 12 weeks). X-ray absorption spectroscopy analyses were then conducted to assess Zn speciation in OW and OW-amended soils. The results of this study highlighted that (i) the fate of Zn in water-soil-plant compartments was similar, regardless of the type of soil and OW, (ii) >97.6% of the Zn input from OW accumulated in the soil surface layer, (iii) Zn uptake by lettuce increased with repeated OW applications, and (iv) no radical change in Zn speciation was observed at the end of the 12-week experiment, and phosphate was found to drive Zn speciation in both OW and amended soils (i.e., amorphous Zn-phosphate and Zn sorbed on hydoxylapatite). These results suggest that Zn speciation in OW is a key determinant controlling the environmental fate of this element in OW-amended soils.


Soil Pollutants , Soil , Manure , Sewage , Soil Pollutants/analysis , Zinc/analysis
10.
Food Res Int ; 127: 108743, 2020 01.
Article En | MEDLINE | ID: mdl-31882114

A large fraction of the South-American cacao production is affected by new cadmium (Cd) regulations in cacao. This work was set up to characterize the distribution and speciation of Cd within the cacao fruit and to monitor potential Cd redistribution during cacao fermentation. In cacao fruits from four locations, Cd concentrations decreased with testa > nib ~ placenta ~ pod husk > mucilage. The distribution of Cd within cacao beans was successfully visualized using laser ablation inductively coupled plasma spectrometry (LA-ICP-MS) and confirmed higher Cd concentrations in the testa than in the nib. Speciation analysis by X-ray absorption spectroscopy (XANES) of unfermented cacao beans revealed that Cd was bound to O/N-ligands in both nib and testa. Fermentation induced an outward Cd migration from the nibs to the testa, i.e. against the total concentration gradient. This migration occurred only if the fermentation was sufficiently extensive to decrease the pH in the nib to <5.0, likely as a result of increased Cd mobility due to organic acid penetration into the nibs. The change in dry weight based nib Cd concentrations during fermentation was, on average, a factor 1.3 decrease. We propose that nib Cd can be reduced if the nib pH is sufficiently acidified during fermentation. However, a balance must be found between flavor development and Cd removal since extreme acidity is detrimental for cacao flavor.


Cacao/chemistry , Cadmium/chemistry , Fermentation , Seeds/chemistry , Hydrogen-Ion Concentration , Temperature
11.
Environ Sci Technol ; 53(17): 10329-10341, 2019 Sep 03.
Article En | MEDLINE | ID: mdl-31356748

This study compared lead (Pb) immobilization efficacies in mining/smelting impacted soil using phosphate and iron amendments via ingestion and inhalation pathways using in vitro and in vivo assays, in conjunction with investigating the dynamics of dust particles in the lungs and gastro-intestinal tract via X-ray fluorescence (XRF) microscopy. Phosphate amendments [phosphoric acid (PA), hydroxyapatite, monoammonium phosphate (MAP), triple super phosphate (TSP), and bone meal biochar] and hematite were applied at a molar ratio of Pb:Fe/P = 1:5. Pb phosphate formation was investigated in the soil/post-in vitro bioaccessibility (IVBA) residuals and in mouse lung via extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structures (XANES) spectroscopy, respectively. EXAFS analysis revealed that anglesite was the dominant phase in the ingestible (<250 µm) and inhalable (<10 µm) particle fractions. Pb IVBA was significantly reduced (p < 0.05) by phosphate amendments in the <250 µm fraction (solubility bioaccessibility research consortium assay) and by PA, MAP, and TSP in the <10 µm fraction (inhalation-ingestion bioaccessibility assay). A 21.1% reduction in Pb RBA (<250 µm fraction) and 56.4% reduction in blood Pb concentration (<10 µm fraction) were observed via the ingestion and inhalation pathways, respectively. XRF microscopy detected Pb in the stomach within 4 h, presumably via mucociliary clearance.


Soil Pollutants , Animals , Biological Availability , Iron , Mice , Phosphates , Soil
12.
Environ Sci Technol ; 52(22): 12987-12996, 2018 11 20.
Article En | MEDLINE | ID: mdl-30339368

Zinc (Zn) is a potentially toxic trace element that is present in large amounts in organic wastes (OWs) spread on agricultural lands as fertilizer. Zn speciation in OW is a crucial parameter to understand its fate in soil after spreading and to assess the risk associated with agricultural recycling of OW. Here, we investigated changes in Zn speciation from raw OWs up to digestates and/or composts for a large series of organic wastes sampled in full-scale plants. Using extended X-ray absorption fine structure, we show that nanosized Zn sulfide (nano-ZnS) is a major Zn species in raw liquid OWs and a minor species in raw solid OWs. Whatever the characteristics of the raw OW, anaerobic digestion always favors the formation of nano-ZnS (>70% of zinc in digestates). However, after 1 to 3 months of composting of OWs, nano-ZnS becomes a minor species (<10% of zinc). In composts, Zn is mostly present as amorphous Zn phosphate and Zn sorbed to ferrihydrite. These results highlight (i) the influence of OW treatment on Zn speciation and (ii) the chemical instability of nano-ZnS formed in OW in anaerobic conditions.


Composting , Anaerobiosis , Soil , Sulfides , Zinc , Zinc Compounds
13.
Environ Sci Technol ; 51(17): 9756-9764, 2017 Sep 05.
Article En | MEDLINE | ID: mdl-28777564

The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg-1 of dissolved Ce2(SO4)3, bare and citrate-coated CeO2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.


Cerium/pharmacokinetics , Nanoparticles , Soil Pollutants/pharmacokinetics , Solanum lycopersicum , Plant Roots , Poaceae , Soil
14.
Environ Sci Technol ; 51(18): 10326-10334, 2017 Sep 19.
Article En | MEDLINE | ID: mdl-28825795

Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.


Bioreactors , Copper , Zinc , Metals , Sewage , Water Purification , X-Ray Absorption Spectroscopy
15.
Environ Pollut ; 222: 495-503, 2017 Mar.
Article En | MEDLINE | ID: mdl-28063709

Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-µm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments.


Manure , Metals, Heavy/chemistry , Soil/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Zinc/chemistry , Agriculture/methods , Animals , Metal Nanoparticles/analysis , Metal Nanoparticles/chemistry , Metals, Heavy/analysis , Particle Size , Soil Pollutants/analysis , Sulfides/analysis , Sus scrofa , Swine , Zinc/analysis , Zinc Compounds/analysis
16.
J Environ Qual ; 46(6): 1139-1145, 2017 Nov.
Article En | MEDLINE | ID: mdl-29293855

To understand the biogeochemistry of nutrients and contaminants in environmental media, their speciation and behavior under different conditions and at multiple scales must be determined. Synchrotron radiation-based X-ray techniques allow scientists to elucidate the underlying mechanisms responsible for nutrient and contaminant mobility, bioavailability, and behavior. The continuous improvement of synchrotron light sources and X-ray beamlines around the world has led to a profound transformation in the field of environmental biogeochemistry and, subsequently, to significant scientific breakthroughs. Following this introductory paper, this special collection includes 10 papers that either present targeted reviews of recent advancements in spectroscopic methods that are applicable to environmental biogeochemistry or describe original research studies conducted on complex environmental samples that have been significantly enhanced by incorporating synchrotron radiation-based X-ray technique(s). We believe that the current focus on improving the speciation of ultra-dilute elements in environmental media through the ongoing optimization of synchrotron technologies (e.g., brighter light sources, improved monochromators, more efficient detectors) will help to significantly push back the frontiers of environmental biogeochemistry research. As many of the relevant techniques produce extremely large datasets, we also identify ongoing improvements in data processing and analysis (e.g., software improvements and harmonization of analytical methods) as a significant requirement for environmental biogeochemists to maximize the information that can be gained using these powerful tools.


Environmental Monitoring , Synchrotrons , Spectrum Analysis , X-Ray Diffraction
17.
Chemosphere ; 170: 225-232, 2017 Mar.
Article En | MEDLINE | ID: mdl-27998818

We aimed at assessing whether the binding and rhizotoxicity of metal cations such as copper that exhibit high affinity for plant roots could be adequately predicted using the Windermere Humic Aqueous Model (WHAM) default parameterization. Accordingly, we first compared the ability of the default parameterization of WHAM and a specific parameterization for terrestrial higher plants (WHAM-THP) to model the competitive binding of copper on wheat (Triticum aestivum L.) and tomato (Solanum lycopersicum L.) roots. Secondly, in an external dataset, we evaluated the ability of WHAM-THP to predict the copper concentration and toxicity to pea (Pisum sativum L.) roots relative to WHAM. WHAM-THP estimates generated a slightly better fit for the competitive binding of copper on wheat and tomato roots (log10 of the root-mean-square error, RMSE = 0.15) than WHAM estimates (RMSE = 0.24). WHAM-THP estimates slightly better fitted the copper concentration in pea roots (RMSE ≤ 0.49) than WHAM estimates (RMSE ≤ 0.67) at low copper exposure and pH ≤ 5. However, WHAM-THP did not at all improve the prediction of copper toxicity to pea roots (RMSE = 13% as also for WHAM). We thus conclude that, although the default parameterization of WHAM does not neatly predict the binding of metal cations on roots, it could however be used with confidence in predictive ecotoxicology for terrestrial higher plants without any specific parameterization.


Copper/toxicity , Models, Theoretical , Pisum sativum/drug effects , Plant Roots/drug effects , Solanum lycopersicum/drug effects , Triticum/drug effects , Adsorption , Binding, Competitive , Copper/metabolism , Ecotoxicology , Humic Substances/analysis , Solanum lycopersicum/metabolism , Pisum sativum/metabolism , Plant Roots/metabolism , Triticum/metabolism
18.
Environ Toxicol Chem ; 36(4): 898-905, 2017 04.
Article En | MEDLINE | ID: mdl-27626618

Parameterizing speciation models by setting the percentage of dissolved organic matter (DOM) that is reactive (% r-DOM) toward metal cations at a single 65% default value is very common in predictive ecotoxicology. The authors tested this practice by comparing the free copper activity (pCu2+ = -log10 [Cu2+ ]) measured in 55 soil sample solutions with pCu2+ predicted with the Windermere humic aqueous model (WHAM) parameterized by default. Predictions of Cu toxicity to soil organisms based on measured or predicted pCu2+ were also compared. Default WHAM parameterization substantially skewed the prediction of measured pCu2+ by up to 2.7 pCu2+ units (root mean square residual = 0.75-1.3) and subsequently the prediction of Cu toxicity for microbial functions, invertebrates, and plants by up to 36%, 45%, and 59% (root mean square residuals ≤9 %, 11%, and 17%), respectively. Reparametrizing WHAM by optimizing the 2 DOM binding properties (i.e., % r-DOM and the Cu complexation constant) within a physically realistic value range much improved the prediction of measured pCu2+ (root mean square residual = 0.14-0.25). Accordingly, this WHAM parameterization successfully predicted Cu toxicity for microbial functions, invertebrates, and plants (root mean square residual ≤3.4%, 4.4%, and 5.8%, respectively). Thus, it is essential to account for the real heterogeneity in DOM binding properties for relatively accurate prediction of Cu speciation in soil solution and Cu toxic effects on soil organisms. Environ Toxicol Chem 2017;36:898-905. © 2016 SETAC.


Copper/toxicity , Ecotoxicology/methods , Humic Substances/analysis , Models, Theoretical , Soil Pollutants/toxicity , Soil/chemistry , Animals , Copper/chemistry , Invertebrates/drug effects , Plant Roots/drug effects , Soil Microbiology , Soil Pollutants/chemistry , Solubility , Solutions
19.
Environ Pollut ; 212: 299-306, 2016 May.
Article En | MEDLINE | ID: mdl-26854699

This study aimed at determining the fate of trace elements (TE) following soil organic waste (OW) application. We used a unique combination of X-ray absorption spectroscopy analyses, to determine TE speciation, with incubation experiments for in situ monitoring of TE availability patterns over a time course with the technique of the diffusive gradients in thin films (DGT). We showed that copper (Cu) and zinc (Zn) availability were both increased in OW-amended soil, but their release was controlled by distinct mechanisms. Zn speciation in OW was found to be dominated by an inorganic species, i.e. Zn sorbed on Fe oxides. Zn desorption from Fe oxides could explain the increase in Zn availability in OW-amended soil. Cu speciation in OW was dominated by organic species. Cu release through the mineralization of organic carbon from OW was responsible for the increase in Cu availability.


Copper/analysis , Environmental Monitoring/methods , Soil Pollutants/analysis , Soil/chemistry , Waste Management/methods , Waste Products/analysis , Zinc/analysis , Trace Elements/analysis , X-Ray Absorption Spectroscopy
20.
Metallomics ; 8(3): 366-76, 2016 Mar.
Article En | MEDLINE | ID: mdl-26824877

Carboxylic groups located in plant cell walls (CW) are generally considered to be the main copper binding sites in plant roots, despite the presence of other functional groups. The aim of this study was to investigate sites responsible for copper binding in root apoplasts, i.e. CW and outer surface of the plasma membrane (PM) continuum. Binding sites in root apoplasts were investigated by comparing isolated CW of a monocotyledon (Triticum aestivum L.) and dicotyledon (Solanum lycopersicum L.) crop with their respective whole roots. Copper speciation was examined by X-ray absorption (XAS) and (13)C-nuclear magnetic resonance spectroscopies while the affinity of ligands involved in copper binding was investigated by modeling copper sorption isotherms. Homogeneous speciation and binding of copper was found in wheat and tomato root apoplasts. Only Cu-N and Cu-O bonds were detected in wheat and tomato root apoplasts. Nitrogen/oxygen ligands were identified in slightly higher proportions (40-70%) than single oxygen ligands. Furthermore, low- and high-affinity binding sites contributed in an almost equivalent proportion to copper binding in root apoplasts. The high-affinity N functional groups embedded in root apoplasts participated in copper binding in the same magnitude than the low-affinity carboxylic groups.


Copper/metabolism , Nitrogen/metabolism , Plant Roots/metabolism , Solanum lycopersicum/metabolism , Triticum/metabolism , X-Ray Absorption Spectroscopy , Carbon-13 Magnetic Resonance Spectroscopy , Cell Membrane/metabolism , Cell Wall/metabolism , Ligands , Thermodynamics
...