Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4403, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479684

RESUMEN

The p53 tumor suppressor regulates multiple context-dependent tumor suppressive programs. Although p53 is mutated in ~90% of small cell lung cancer (SCLC) tumors, how p53 mediates tumor suppression in this context is unknown. Here, using a mouse model of SCLC in which endogenous p53 expression can be conditionally and temporally regulated, we show that SCLC tumors maintain a requirement for p53 inactivation. However, we identify tumor subtype heterogeneity between SCLC tumors such that p53 reactivation induces senescence in a subset of tumors, while in others, p53 induces necrosis. We pinpoint cyclophilins as critical determinants of a p53-induced transcriptional program that is specific to SCLC tumors and cell lines poised to undergo p53-mediated necrosis. Importantly, inhibition of cyclophilin isomerase activity, or genetic ablation of specific cyclophilin genes, suppresses p53-mediated necrosis by limiting p53 transcriptional output without impacting p53 chromatin binding. Our study demonstrates that intertumoral heterogeneity in SCLC influences the biological response to p53 restoration, describes a cyclophilin-dependent mechanism of p53-regulated cell death, and uncovers putative mechanisms for the treatment of this most-recalcitrant tumor type.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Ciclofilinas/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Proteína p53 Supresora de Tumor/genética , Necrosis/genética , Neoplasias Pulmonares/genética
2.
Commun Biol ; 6(1): 255, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899051

RESUMEN

SETD2 is a tumor suppressor that is frequently inactivated in several cancer types. The mechanisms through which SETD2 inactivation promotes cancer are unclear, and whether targetable vulnerabilities exist in these tumors is unknown. Here we identify heightened mTORC1-associated gene expression programs and functionally higher levels of oxidative metabolism and protein synthesis as prominent consequences of Setd2 inactivation in KRAS-driven mouse models of lung adenocarcinoma. Blocking oxidative respiration and mTORC1 signaling abrogates the high rates of tumor cell proliferation and tumor growth specifically in SETD2-deficient tumors. Our data nominate SETD2 deficiency as a functional marker of sensitivity to clinically actionable therapeutics targeting oxidative respiration and mTORC1 signaling.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/genética , Genes Supresores de Tumor , Neoplasias Pulmonares/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Estrés Oxidativo , N-Metiltransferasa de Histona-Lisina/genética
3.
Cell Metab ; 33(7): 1418-1432.e6, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33761312

RESUMEN

Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.


Asunto(s)
Conducta Alimentaria/fisiología , Corteza Insular/fisiología , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/genética , Hipernutrición/etiología , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Conducta Alimentaria/efectos de los fármacos , Femenino , Corteza Insular/efectos de los fármacos , Corteza Insular/metabolismo , Corteza Insular/patología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Hipernutrición/genética , Hipernutrición/metabolismo , Hipernutrición/patología
4.
Elife ; 92020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894221

RESUMEN

Stress has pleiotropic physiologic effects, but the neural circuits linking stress to these responses are not well understood. Here, we describe a novel population of lateral septum neurons expressing neurotensin (LSNts) in mice that are selectively tuned to specific types of stress. LSNts neurons increase their activity during active escape, responding to stress when flight is a viable option, but not when associated with freezing or immobility. Chemogenetic activation of LSNts neurons decreases food intake and body weight, without altering locomotion and anxiety. LSNts neurons co-express several molecules including Glp1r (glucagon-like peptide one receptor) and manipulations of Glp1r signaling in the LS recapitulates the behavioral effects of LSNts activation. Activation of LSNts terminals in the lateral hypothalamus (LH) also decreases food intake. These results show that LSNts neurons are selectively tuned to active escape stress and can reduce food consumption via effects on hypothalamic pathways.


Asunto(s)
Ingestión de Alimentos/fisiología , Reacción de Fuga/fisiología , Sistema Límbico/fisiología , Neuronas/fisiología , Animales , Ansiedad/fisiopatología , Peso Corporal/fisiología , Femenino , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Transcriptoma
5.
Mol Psychiatry ; 25(3): 666-679, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29875477

RESUMEN

Feeding is a complex motivated behavior controlled by a distributed neural network that processes sensory information to generate adaptive behavioral responses. Accordingly, studies using appetitive Pavlovian conditioning confirm that environmental cues that are associated with food availability can induce feeding even in satiated subjects. However, in mice, appetitive conditioning generally requires intensive training and thus can impede molecular studies that often require large numbers of animals. To address this, we developed and validated a simple and rapid context-induced feeding (Ctx-IF) task in which cues associated with food availability can later lead to increased food consumption in sated mice. We show that the associated increase in food consumption is driven by both positive and negative reinforcement and that spaced training is more effective than massed training. Ctx-IF can be completed in ~1 week and provides an opportunity to study the molecular mechanisms and circuitry underlying non-homeostatic eating. We have used this paradigm to map brain regions that are activated during Ctx-IF with cFos immunohistochemistry and found that the insular cortex, and other regions, are activated following exposure to cues denoting the availability of food. Finally, we show that inhibition of the insular cortex using GABA agonists impairs performance of the task. Our findings provide a novel assay in mice for defining the functional neuroanatomy of appetitive conditioning and identify specific brain regions that are activated during the development of learned behaviors that impact food consumption.


Asunto(s)
Conducta Alimentaria/fisiología , Refuerzo en Psicología , Saciedad/fisiología , Animales , Encéfalo/fisiología , Condicionamiento Clásico/fisiología , Señales (Psicología) , Ingestión de Alimentos/fisiología , Alimentos , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Motivación/fisiología , Corteza Prefrontal/fisiología
6.
Neuron ; 102(4): 873-886.e5, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30930044

RESUMEN

Associative learning of food cues that link location in space to food availability guides feeding behavior in mammals. However, the function of specific neurons that are elements of the higher-order, cognitive circuitry controlling feeding behavior is largely unexplored. Here, we report that hippocampal dopamine 2 receptor (hD2R) neurons are specifically activated by food and that both acute and chronic modulation of their activity reduces food intake in mice. Upstream projections from the lateral entorhinal cortex (LEC) to the hippocampus activate hD2R cells and can also decrease food intake. Finally, activation of hD2R neurons interferes with the encoding of a spatial memory linking food to a specific location via projections from the hippocampus to the septal area. Altogether these data describe a previously unidentified LEC > hippocampus > septal higher-order circuit that regulates feeding behavior.


Asunto(s)
Aprendizaje por Asociación/fisiología , Corteza Entorrinal/fisiología , Conducta Alimentaria/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Tabique del Cerebro/fisiología , Memoria Espacial/fisiología , Animales , Conducta Animal , Señales (Psicología) , Hipocampo/citología , Ratones , Vías Nerviosas/fisiología , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-29335367

RESUMEN

Mammalian species differ dramatically in telomere biology. Species larger than 5-10 kg repress somatic telomerase activity and have shorter telomeres, leading to replicative senescence. It has been proposed that evolution of replicative senescence in large-bodied species is an anti-tumour mechanism counteracting increased risk of cancer due to increased cell numbers. By contrast, small-bodied species express high telomerase activity and have longer telomeres. To counteract cancer risk due to longer lifespan, long-lived small-bodied species evolved additional telomere-independent tumour suppressor mechanisms. Here, we tested the connection between telomere biology and tumorigenesis by analysing the propensity of fibroblasts from 18 rodent species to form tumours. We found a negative correlation between species lifespan and anchorage-independent growth. Small-bodied species required inactivation of Rb and/or p53 and expression of oncogenic H-Ras to form tumours. Large-bodied species displayed a continuum of phenotypes requiring additional genetic 'hits' for malignant transformation. Based on these data we refine the model of the evolution of tumour suppressor mechanisms and telomeres. We propose that two different strategies evolved in small and large species because small-bodied species cannot tolerate small tumours that form prior to activation of the telomere barrier, and must instead use telomere-independent strategies that act earlier, at the hyperplasia stage.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.


Asunto(s)
Carcinogénesis/genética , Evolución Molecular , Roedores/genética , Homeostasis del Telómero , Telómero/metabolismo , Animales , Senescencia Celular/genética , Fibroblastos/citología , Genes de Retinoblastoma/genética , Genes p53/genética , Genes ras/genética , Humanos , Ratones Desnudos , Cultivo Primario de Células , Piel/citología , Telomerasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Aging (Albany NY) ; 8(5): 841-7, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27163160

RESUMEN

Differences in the way human and mouse fibroblasts experience senescence in culture had long puzzled researchers. While senescence of human cells is mediated by telomere shortening, Parrinello et al. demonstrated that senescence of mouse cells is caused by extreme oxygen sensitivity. It was hypothesized that the striking difference in oxygen sensitivity between mouse and human cells explains their different rates of aging. To test if this hypothesis is broadly applicable, we cultured cells from 16 rodent species with diverse lifespans in 3% and 21% oxygen and compared their growth rates. Unexpectedly, fibroblasts derived from laboratory mouse strains were the only cells demonstrating extreme sensitivity to oxygen. Cells from hamster, muskrat, woodchuck, capybara, blind mole rat, paca, squirrel, beaver, naked mole rat and wild-caught mice were mildly sensitive to oxygen, while cells from rat, gerbil, deer mouse, chipmunk, guinea pig and chinchilla showed no difference in the growth rate between 3% and 21% oxygen. We conclude that, although the growth of primary fibroblasts is generally improved by maintaining cells in 3% oxygen, the extreme oxygen sensitivity is a peculiarity of laboratory mouse strains, possibly related to their very long telomeres, and fibroblast oxygen sensitivity does not directly correlate with species' lifespan.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Longevidad/fisiología , Oxígeno/administración & dosificación , Telómero/fisiología , Animales , Células Cultivadas , Senescencia Celular/fisiología , Fibroblastos/citología , Estrés Oxidativo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...