Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 81(9): 267, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003673

RESUMEN

In this study, we evaluated the impact of human gut microbiota on the immune pathways in the respiratory tract using a gnotobiotic (Gn) piglet model. We humanized piglets with rural and urban infant fecal microbiota (RIFM and UIFM, respectively) and then infected them with a H1N1 swine influenza virus. We analyzed the microbial diversity and structure of the intestinal and respiratory tracts of the piglets before and after the influenza virus infection and measured the viral load and immune responses. We found that the viral load in the upper respiratory tract of UIFM transplanted piglets was higher than their rural cohorts (RIFM), while virus-specific antibody responses were comparable. The relative cytokine gene expression in the tracheobronchial (respiratory tract) and mesenteric (gastrointestinal) lymph nodes, lungs, blood, and spleen of RIFM and UIFM piglets revealed a trend in reciprocal regulation of proinflammatory, innate, and adaptive immune-associated cytokines as well as the frequency of T-helper/memory cells, cytotoxic T cells, and myeloid immune cell subsets. We also observed different phylum-level shifts of the fecal microbiota in response to influenza virus infection between the two piglet groups, suggesting the potential impact of the gut microbiota on the immune responses to influenza virus infection and lung microbiota. In conclusion, Gn piglets humanized with diverse infant fecal microbiota had differential immune regulation, with UIFM favoring the activation of proinflammatory immune mediators following an influenza virus infection compared to their rural RIFM cohorts. Furthermore, Gn piglets can be a useful model in investigating the impact of diverse human microbiota of the gastrointestinal tract, probably also the respiratory tract, on respiratory health and testing specific probiotic- or prebiotic-based therapeutics.


Asunto(s)
Citocinas , Modelos Animales de Enfermedad , Heces , Microbioma Gastrointestinal , Vida Libre de Gérmenes , Inmunidad Mucosa , Subtipo H1N1 del Virus de la Influenza A , Animales , Porcinos , Heces/microbiología , Heces/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Citocinas/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Carga Viral , Lactante , Gripe Humana/inmunología , Gripe Humana/microbiología , Gripe Humana/virología
2.
Vaccines (Basel) ; 12(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38932376

RESUMEN

This study focuses on the development and characterization of an intranasal vaccine platform using adjuvanted nanoparticulate delivery of swine influenza A virus (SwIAV). The vaccine employed whole inactivated H1N2 SwIAV as an antigen and STING-agonist ADU-S100 as an adjuvant, with both surface adsorbed or encapsulated in mannose-chitosan nanoparticles (mChit-NPs). Optimization of mChit-NPs included evaluating size, zeta potential, and cytotoxicity, with a 1:9 mass ratio of antigen to NP demonstrating high loading efficacy and non-cytotoxic properties suitable for intranasal vaccination. In a heterologous H1N1 pig challenge trial, the mChit-NP intranasal vaccine induced cross-reactive sIgA antibodies in the respiratory tract, surpassing those of a commercial SwIAV vaccine. The encapsulated mChit-NP vaccine induced high virus-specific neutralizing antibody and robust cellular immune responses, while the adsorbed vaccine elicited specific high IgG and hemagglutinin inhibition antibodies. Importantly, both the mChit-NP vaccines reduced challenge heterologous viral replication in the nasal cavity higher than commercial swine influenza vaccine. In summary, a novel intranasal mChit-NP vaccine platform activated both the arms of the immune system and is a significant advancement in swine influenza vaccine design, demonstrating its potential effectiveness for pig immunization.

3.
Poult Sci ; 103(5): 103569, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447310

RESUMEN

Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry. We reported earlier that the Salmonella enteritidis (SE) immunogenic outer membrane proteins (OMPs) and flagellin (FLA) entrapped in mannose chitosan nanoparticles (OMPs-FLA-mCS NPs) administered prime-boost (d-3 and 3-wk later) by oral inoculation elicits mucosal immunity and reduces challenge SE colonization by over 1 log10 CFU in birds. In this study, we sought to evaluate whether the SE antigens containing OMPs-FLA-mCS NPs vaccine induces cross-protection against Salmonella typhimurium (ST) in broilers. Our data indicated that the OMPs-FLA-mCS NPs vaccine induced higher cross-protective antibody responses compared to commercial Poulvac ST vaccine (contains a modified-live ST bacterium). Particularly, OMPs-FLA-mCS-NP vaccine elicited OMPs and FLA antigens specific increased production of secretory IgA and IgY antibodies in samples collected at both post-vaccination and post-challenge timepoints compared to commercial vaccine group. Notably, the vaccine reduced the challenge ST bacterial load by 0.8 log10 CFU in the cecal content, which was comparable to the outcome of Poulvac ST vaccination. In conclusion, our data suggested that orally administered OMPs-FLA-mCS-NP SE vaccine elicited cross protective mucosal immune responses against ST colonization in broilers. Thus, this candidate vaccine could be a viable option replacing the existing both live and killed Salmonella vaccines for birds.


Asunto(s)
Pollos , Quitosano , Protección Cruzada , Nanopartículas , Enfermedades de las Aves de Corral , Salmonelosis Animal , Vacunas contra la Salmonella , Salmonella enteritidis , Salmonella typhimurium , Animales , Pollos/inmunología , Salmonella enteritidis/inmunología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/prevención & control , Salmonelosis Animal/inmunología , Quitosano/administración & dosificación , Quitosano/farmacología , Vacunas contra la Salmonella/inmunología , Vacunas contra la Salmonella/administración & dosificación , Nanopartículas/administración & dosificación , Salmonella typhimurium/inmunología , Administración Oral , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
4.
Vaccines (Basel) ; 11(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38006031

RESUMEN

The development of cross-protective vaccines against the zoonotic swine influenza A virus (swIAV), a potential pandemic-causing agent, continues to be an urgent global health concern. Commercially available vaccines provide suboptimal cross-protection against circulating subtypes of swIAV, which can lead to worldwide economic losses and poor zoonosis deterrence. The limited efficacy of current swIAV vaccines demands innovative strategies for the development of next-generation vaccines. Considering that intramuscular injection is the standard route of vaccine administration in both human and veterinary medicine, the exploration of alternative strategies, such as intradermal vaccination, presents a promising avenue for vaccinology. This investigation demonstrates the first evaluation of a direct comparison between a commercially available multivalent swIAV vaccine and monovalent whole inactivated H1N2 swine influenza vaccine, delivered by intradermal, intranasal, and intramuscular routes. The monovalent vaccines were adjuvanted with NanoST, a cationic phytoglycogen-based nanoparticle that is combined with the STING agonist ADU-S100. Upon heterologous challenge, intradermal vaccination generated a stronger cross-reactive nasal and serum antibody response in pigs compared with intranasal and intramuscular vaccination. Antibodies induced by intradermal immunization also had higher avidity compared with the other routes of vaccination. Bone marrow from intradermally and intramuscularly immunized pigs had both IgG and IgA virus-specific antibody-secreting cells. These studies reveal that NanoST is a promising adjuvant system for the intradermal administration of STING-targeted influenza vaccines.

5.
Vaccines (Basel) ; 11(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38006039

RESUMEN

Swine influenza A viruses (SwIAVs) are pathogens of both veterinary and medical significance. Intranasal (IN) vaccination has the potential to reduce flu infection. We investigated the efficacy of split SwIAV H1N2 antigens adsorbed with a plant origin nanoparticle adjuvant [Nano11-SwIAV] or in combination with a STING agonist ADU-S100 [NanoS100-SwIAV]. Conventional pigs were vaccinated via IN and challenged with a heterologous SwIAV H1N1-OH7 or 2009 H1N1 pandemic virus. Immunologically, in NanoS100-SwIAV vaccinates, we observed enhanced frequencies of activated monocytes in the blood of the pandemic virus challenged animals and in tracheobronchial lymph nodes (TBLN) of H1N1-OH7 challenged animals. In both groups of the virus challenged pigs, increased frequencies of IL-17A+ and CD49d+IL-17A+ cytotoxic lymphocytes were observed in Nano11-SwIAV vaccinates in the draining TBLN. Enhanced frequency of CD49d+IFNγ+ CTLs in the TBLN and blood of both the Nano11-based SwIAV vaccinates was observed. Animals vaccinated with both Nano11-based vaccines had upregulated cross-reactive secretory IgA in the lungs and serum IgG against heterologous and heterosubtypic viruses. However, in NanoS100-SwIAV vaccinates, a slight early reduction in the H1N1 pandemic virus and a late reduction in the SwIAV H1N1-OH7 load in the nasal passages were detected. Hence, despite vast genetic differences between the vaccine and both the challenge viruses, IN vaccination with NanoS100-SwIAV induced antigen-specific moderate levels of cross-protective immune responses.

6.
Res Vet Sci ; 162: 104958, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37517298

RESUMEN

Antibiotics have the potential to have both direct and indirect detrimental impacts on animal and human health. For instance, antibiotic residues and pathogenic resistance against the drug are very common in poultry because of antibiotics used in their feed. It is necessary to use natural feed additives as effective alternatives instead of synthetic antibiotics. Curcumin, a polyphenol compound one of the natural compounds from the rhizomes of turmeric (Curcuma spp.) and has been suggested to have several therapeutic benefits in the treatment of human diseases. Curcumin exhibited some positive responses such as growth promoter, antioxidant, antibacterial, antiviral, anticoccidial, anti-stress, and immune modulator activities. Curcumin played a pivotal role in regulating the structure of the intestinal microbiome for health promotion and the treatment of intestinal dysbiosis. It is suggested that curcumin alone or a combination with other feed additives could be a dietary strategy to improve poultry health and productivity.


Asunto(s)
Curcumina , Humanos , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/química , Aves de Corral , Antioxidantes/uso terapéutico , Dieta/veterinaria , Curcuma/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
7.
Front Vet Sci ; 9: 1053886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532332

RESUMEN

The beak and feather disease virus (BFDV) is one of the few pathogens capable of causing extinction of psittacines. To determine the prevalence and the nature of BFDV mutation, this study investigated the presence of the BFDV among 1,095 individual birds of the 17 psittacine species in Iran followed by analyzing the DNA sequences of seven replication-associated protein (rep) and 10 capsid (cap) genomes of the virus. The BFDV was found to be the foremost pathogen among more than 12 psittacine species, and phylogenetic analysis showed that the BFDV GenBank-published sequences from Poland, Saudi Arabia, South Africa, Taiwan, and Thailand were most similar to those of this study. Evolutionary analysis concluded that arginine, leucine, and glycine were the amino acids frequently involved in the least-conserved substitution patterns of BFDV, and conversely, methionine, glutamine, and tryptophan were the amino acids that exhibited ultra-high conservation through the substitution patterns. The high substitution rate of arginine to lysine and glycine to serine also made greater contribution to the BFDV gene mutation. The relative synonymous codon usage between two genes revealed that the cap genome encoded proteins frequently used fewer codons, while the rep genome encoded proteins used more codons only at moderate frequency, explaining the broader divergence of the cap compared to the rep sequence. The data analysis also introduced a new variant of BFDV that exists in the rep and cap sequences of budgerigars. While the existence of more new variants was suspected, more solid evidence is required to substantiate this suspicion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA