Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Math Biosci Eng ; 20(8): 14634-14674, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37679152

RESUMEN

A nonlinear partial differential equation (PDE) based compartmental model of COVID-19 provides a continuous trace of infection over space and time. Finer resolutions in the spatial discretization, the inclusion of additional model compartments and model stratifications based on clinically relevant categories contribute to an increase in the number of unknowns to the order of millions. We adopt a parallel scalable solver that permits faster solutions for these high fidelity models. The solver combines domain decomposition and algebraic multigrid preconditioners at multiple levels to achieve the desired strong and weak scalabilities. As a numerical illustration of this general methodology, a five-compartment susceptible-exposed-infected-recovered-deceased (SEIRD) model of COVID-19 is used to demonstrate the scalability and effectiveness of the proposed solver for a large geographical domain (Southern Ontario). It is possible to predict the infections for a period of three months for a system size of 186 million (using 3200 processes) within 12 hours saving months of computational effort needed for the conventional solvers.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Algoritmos , Geografía , Ontario
2.
BMJ Open ; 12(3): e052681, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273043

RESUMEN

INTRODUCTION: The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions. METHODS AND ANALYSIS: We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model's predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states. ETHICS AND DISSEMINATION: Approved by Carleton University's Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication.


Asunto(s)
COVID-19 , Algoritmos , Teorema de Bayes , COVID-19/epidemiología , COVID-19/prevención & control , Calibración , Modelos Epidemiológicos , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...