Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5402, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926390

RESUMEN

Acute brain slices represent a workhorse model for studying the central nervous system (CNS) from nanoscale events to complex circuits. While slice preparation inherently involves tissue damage, it is unclear how microglia, the main immune cells and damage sensors of the CNS react to this injury and shape neuronal activity ex vivo. To this end, we investigated microglial phenotypes and contribution to network organization and functioning in acute brain slices. We reveal time-dependent microglial phenotype changes influenced by complex extracellular ATP dynamics through P2Y12R and CX3CR1 signalling, which is sustained for hours in ex vivo mouse brain slices. Downregulation of P2Y12R and changes of microglia-neuron interactions occur in line with alterations in the number of excitatory and inhibitory synapses over time. Importantly, functional microglia modulate synapse sprouting, while microglial dysfunction results in markedly impaired ripple activity both ex vivo and in vivo. Collectively, our data suggest that microglia are modulators of complex neuronal networks with important roles to maintain neuronal network integrity and activity. We suggest that slice preparation can be used to model time-dependent changes of microglia-neuron interactions to reveal how microglia shape neuronal circuits in physiological and pathological conditions.


Asunto(s)
Adenosina Trifosfato , Encéfalo , Receptor 1 de Quimiocinas CX3C , Microglía , Neuronas , Receptores Purinérgicos P2Y12 , Sinapsis , Animales , Microglía/metabolismo , Adenosina Trifosfato/metabolismo , Ratones , Neuronas/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptores Purinérgicos P2Y12/metabolismo , Receptores Purinérgicos P2Y12/genética , Encéfalo/metabolismo , Sinapsis/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Masculino , Transducción de Señal
3.
Nat Commun ; 14(1): 6159, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816713

RESUMEN

Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.


Asunto(s)
Hipocampo , Neuronas , Hipocampo/fisiología , Neuronas/metabolismo , Corteza Entorrinal/fisiología , Ritmo Teta/fisiología , Parvalbúminas/metabolismo , Potenciales de Acción/fisiología , Región CA1 Hipocampal/fisiología
4.
Cell Rep ; 40(5): 111149, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926456

RESUMEN

Episodic learning and memory retrieval are dependent on hippocampal theta oscillation, thought to rely on the GABAergic network of the medial septum (MS). To test how this network achieves theta synchrony, we recorded MS neurons and hippocampal local field potential simultaneously in anesthetized and awake mice and rats. We show that MS pacemakers synchronize their individual rhythmicity frequencies, akin to coupled pendulum clocks as observed by Huygens. We optogenetically identified them as parvalbumin-expressing GABAergic neurons, while MS glutamatergic neurons provide tonic excitation sufficient to induce theta. In accordance, waxing and waning tonic excitation is sufficient to toggle between theta and non-theta states in a network model of single-compartment inhibitory pacemaker neurons. These results provide experimental and theoretical support to a frequency-synchronization mechanism for pacing hippocampal theta, which may serve as an inspirational prototype for synchronization processes in the central nervous system from Nematoda to Arthropoda to Chordate and Vertebrate phyla.


Asunto(s)
Hipocampo , Ritmo Teta , Potenciales de Acción/fisiología , Animales , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Ratones , Parvalbúminas/metabolismo , Ratas , Ritmo Teta/fisiología
5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599103

RESUMEN

Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.


Asunto(s)
Proteína 2 Inhibidora de la Diferenciación/genética , Transcripción Genética/genética , Animales , Epilepsia del Lóbulo Temporal/genética , Ratones , Fibras Musgosas del Hipocampo/fisiología , Neurogénesis/genética , Ratas
6.
J Neural Eng ; 18(4)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34181590

RESUMEN

Objective. This study examines how the geometrical arrangement of electrodes influences spike sorting efficiency, and attempts to formalise principles for the design of electrode systems enabling optimal spike sorting performance.Approach. The clustering performance of KlustaKwik, a popular toolbox, was evaluated using semi-artificial multi-channel data, generated from a library of real spike waveforms recorded in the CA1 region of mouse Hippocampusin vivo.Main results. Based on spike sorting results under various channel configurations and signal levels, a simple model was established to describe the efficiency of different electrode geometries. Model parameters can be inferred from existing spike waveform recordings, which allowed quantifying both the cooperative effect between channels and the noise dependence of clustering performance.Significance. Based on the model, analytical and numerical results can be derived for the optimal spacing and arrangement of electrodes for one- and two-dimensional electrode systems, targeting specific brain areas.


Asunto(s)
Algoritmos , Neuronas , Potenciales de Acción , Animales , Análisis por Conglomerados , Electrodos , Ratones , Procesamiento de Señales Asistido por Computador
7.
BMC Med Genet ; 20(1): 198, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852434

RESUMEN

BACKGROUND: Perrault syndrome is a genetically heterogenous, very rare disease, characterized clinically by sensorineural hearing loss, ovarian dysfunction and neurological symptoms. We present the case of a 33 years old female patient with TWNK-associated Perrault syndrome. The TWNK gene is coding the mitochondrial protein Twinkle and currently there are only two reports characterizing the phenotype of TWNK-associated Perrault syndrome. None of these publications reported about special brain MRI alterations and neuropathological changes in the muscle and peripheral nerves. CASE PRESENTATION: Our patients with TWNK-dependent Perrault syndrome had severe bilateral hypoacusis, severe ataxia, polyneuropathy, lower limb spastic paraparesis with pyramidal signs, and gonadal dysgenesis. Psychiatric symptoms such as depression and paranoia were present as well. Brain MRI observed progressive cerebellar hyperintensive signs associated with cerebellar, medulla oblongata and cervical spinal cord atrophy. Light microscopy of the muscle biopsy detected severe neurogenic lesions. COX staining was centrally reduced in many muscle fibers. Both muscle and sural nerve electron microscopy detected slightly enlarged mitochondria with abnormal cristae surrounded by lipid vacuoles. In the sural nerve, dystrophic axons had focally uncompacted myelin lamellae present. Genetic investigation revealed multiple mtDNA deletion and compound heterozygous mutations of the TWNK gene (c.1196 A > G, c.1358 G > A). CONCLUSION: This study demonstrates that TWNK associated Perrault syndrome has a much broader phenotype as originally published. The coexistence of severe hypoacusis, spastic limb weakness, ataxia, polyneuropathy, gonadal dysgensia, hyperintense signals in the cerebellum and the presence of the mtDNA multiple deletion could indicate the impairment of the TWNK gene. This is the first report about pyramidal tract involvement and cerebellar MRI alteration associated with TWNK-related Perrault syndrome.


Asunto(s)
ADN Helicasas/genética , Disgenesia Gonadal 46 XX/genética , Pérdida Auditiva Sensorineural/genética , Proteínas Mitocondriales/genética , Fenotipo , Adulto , Femenino , Disgenesia Gonadal 46 XX/diagnóstico por imagen , Disgenesia Gonadal 46 XX/patología , Pérdida Auditiva Sensorineural/diagnóstico por imagen , Pérdida Auditiva Sensorineural/patología , Humanos , Imagen por Resonancia Magnética , Mutación
8.
Science ; 364(6442)2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31123108

RESUMEN

Hippocampal pyramidal cells encode memory engrams, which guide adaptive behavior. Selection of engram-forming cells is regulated by somatostatin-positive dendrite-targeting interneurons, which inhibit pyramidal cells that are not required for memory formation. Here, we found that γ-aminobutyric acid (GABA)-releasing neurons of the mouse nucleus incertus (NI) selectively inhibit somatostatin-positive interneurons in the hippocampus, both monosynaptically and indirectly through the inhibition of their subcortical excitatory inputs. We demonstrated that NI GABAergic neurons receive monosynaptic inputs from brain areas processing important environmental information, and their hippocampal projections are strongly activated by salient environmental inputs in vivo. Optogenetic manipulations of NI GABAergic neurons can shift hippocampal network state and bidirectionally modify the strength of contextual fear memory formation. Our results indicate that brainstem NI GABAergic cells are essential for controlling contextual memories.


Asunto(s)
Aprendizaje por Asociación/fisiología , Neuronas GABAérgicas/fisiología , Núcleos del Rafe/fisiología , Animales , Femenino , Interneuronas/química , Interneuronas/fisiología , Masculino , Pruebas de Memoria y Aprendizaje , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/fisiología , Células Piramidales/química , Células Piramidales/fisiología , Somatostatina/análisis , Somatostatina/fisiología , Ritmo Teta
9.
Cell Rep ; 23(6): 1706-1715, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742427

RESUMEN

Animals build a model of their surroundings on the basis of information gathered during exploration. Rearing on the hindlimbs changes the vantage point of the animal, increasing the sampled area of the environment. This environmental knowledge is suggested to be integrated into a cognitive map stored by the hippocampus. Previous studies have found that damage to the hippocampus impairs rearing. Here, we characterize the operational state of the hippocampus during rearing episodes. We observe an increase of theta frequency paralleled by a sink in the dentate gyrus and a prominent theta-modulated fast gamma transient in the middle molecular layer. On the descending phase of rearing, a decrease of theta power is detected. Place cells stop firing during rearing, while a different subset of putative pyramidal cells is activated. Our results suggest that the hippocampus switches to a different operational state during rearing, possibly to update spatial representation with information from distant sources.


Asunto(s)
Conducta Animal/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Animales , Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Masculino , Ratones Endogámicos C57BL , Ritmo Teta/fisiología
10.
J Physiol ; 594(13): 3775-90, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27028801

RESUMEN

KEY POINTS: The median raphe is a key subcortical modulatory centre involved in several brain functions, such as regulation of the sleep-wake cycle, emotions and memory storage. A large proportion of median raphe neurones are glutamatergic and implement a radically different mode of communication compared to serotonergic cells, although their in vivo activity is unknown. We provide the first description of the in vivo, brain state-dependent firing properties of median raphe glutamatergic neurones identified by immunopositivity for the vesicular glutamate transporter type 3 (VGluT3) and serotonin (5-HT). Glutamatergic populations (VGluT3+/5-HT- and VGluT3+/5-HT+) were compared with the purely serotonergic (VGluT3-/5-HT+ and VGluT3-/5-HT-) neurones. VGluT3+/5-HT+ neurones fired similar to VGluT3-/5-HT+ cells, whereas they significantly diverged from the VGluT3+/5-HT- population. Activity of the latter subgroup resembled the spiking of VGluT3-/5-HT- cells, except for their diverging response to sensory stimulation. The VGluT3+ population of the median raphe may broadcast rapidly varying signals on top of a state-dependent, tonic modulation. ABSTRACT: Subcortical modulation is crucial for information processing in the cerebral cortex. Besides the canonical neuromodulators, glutamate has recently been identified as a key cotransmitter of numerous monoaminergic projections. In the median raphe, a pure glutamatergic neurone population projecting to limbic areas was also discovered with a possibly novel, yet undetermined function. In the present study, we report the first functional description of the vesicular glutamate transporter type 3 (VGluT3)-expressing median raphe neurones. Because there is no appropriate genetic marker for the separation of serotonergic (5-HT+) and non-serotonergic (5-HT-) VGluT3+ neurones, we utilized immunohistochemistry after recording and juxtacellular labelling in anaesthetized rats. VGluT3+/5-HT- neurones fired faster, more variably and were permanently activated during sensory stimulation, as opposed to the transient response of the slow firing VGluT3-/5-HT+ subgroup. VGluT3+/5-HT- cells were also more active during hippocampal theta. In addition, the VGluT3-/5-HT- population, comprising putative GABAergic cells, resembled the firing of VGluT3+/5-HT- neurones but without any significant reaction to the sensory stimulus. Interestingly, the VGluT3+/5-HT+ group, spiking slower than the VGluT3+/5-HT- population, exhibited a mixed response (i.e. the initial transient activation was followed by a sustained elevation of firing). Phase coupling to hippocampal and prefrontal slow oscillations was found in VGluT3+/5-HT- neurones, also differentiating them from the VGluT3+/5-HT+ subpopulation. Taken together, glutamatergic neurones in the median raphe may implement multiple, highly divergent forms of modulation in parallel: a slow, tonic mode interrupted by sensory-evoked rapid transients, as well as a fast one capable of conveying complex patterns influenced by sensory inputs.


Asunto(s)
Neuronas/fisiología , Núcleos del Rafe/fisiología , Serotonina/fisiología , Proteínas de Transporte Vesicular de Glutamato/fisiología , Animales , Hipocampo/fisiología , Masculino , Corteza Prefrontal/fisiología , Ratas Wistar
11.
Science ; 326(5951): 449-53, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19833972

RESUMEN

Cortical information processing is under state-dependent control of subcortical neuromodulatory systems. Although this modulatory effect is thought to be mediated mainly by slow nonsynaptic metabotropic receptors, other mechanisms, such as direct synaptic transmission, are possible. Yet, it is currently unknown if any such form of subcortical control exists. Here, we present direct evidence of a strong, spatiotemporally precise excitatory input from an ascending neuromodulatory center. Selective stimulation of serotonergic median raphe neurons produced a rapid activation of hippocampal interneurons. At the network level, this subcortical drive was manifested as a pattern of effective disynaptic GABAergic inhibition that spread throughout the circuit. This form of subcortical network regulation should be incorporated into current concepts of normal and pathological cortical function.


Asunto(s)
Hipocampo/fisiología , Interneuronas/fisiología , Neuronas Aferentes/fisiología , Núcleos del Rafe/fisiología , Serotonina/fisiología , Sinapsis/fisiología , Potenciales Sinápticos/fisiología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Ácido Glutámico/fisiología , Hipocampo/citología , Potenciales Postsinápticos Inhibidores , Ratones , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa , Núcleos del Rafe/citología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA