RESUMEN
BACKGROUND: Resistance to apoptosis in chronic myeloid leukemia (CML) is associated with constitutive tyrosine kinase activity of the Bcr-Abl oncoprotein. The deregulated expression of apoptosis-related genes and alteration in epigenetic machinery may also contribute to apoptosis resistance in CML. Tyrosine kinase inhibitors target the Bcr-Abl oncoprotein and are used in CML treatment. The resistance of CML patients to tyrosine kinase inhibitors has guided the search for new compounds that may induce apoptosis in Bcr-Abl+ leukemic cells and improve the disease treatment. METHODS: In the present study, we investigated whether the L-amino acid oxidase isolated from Bothrops moojeni snake venom (BmooLAAO-I) (i) was cytotoxic to Bcr-Abl+ cell lines (HL-60.Bcr-Abl, K562-S, and K562-R), HL-60 (acute promyelocytic leukemia) cells, the non-tumor cell line HEK-293, and peripheral blood mononuclear cells (PBMC); and (ii) affected epigenetic mechanisms, including DNA methylation and microRNAs expression in vitro. RESULTS: BmooLAAO-I induced ROS production, apoptosis, and differential DNA methylation pattern of regulatory apoptosis genes. The toxin upregulated expression of the pro-apoptotic genes BID and FADD and downregulated DFFA expression in leukemic cell lines, as well as increased miR-16 expression - whose major predicted target is the anti-apoptotic gene BCL2 - in Bcr-Abl+ cells. CONCLUSION: BmooLAAO-I exerts selective antitumor action mediated by H2O2 release and induces apoptosis, and alterations in epigenetic mechanisms. These results support future investigations on the effect of BmooLAAO-I on in vivo models to determine its potential in CML therapy.
RESUMEN
Resistance to apoptosis in chronic myeloid leukemia (CML) is associated with constitutive tyrosine kinase activity of the Bcr-Abl oncoprotein. The deregulated expression of apoptosis-related genes and alteration in epigenetic machinery may also contribute to apoptosis resistance in CML. Tyrosine kinase inhibitors target the Bcr-Abl oncoprotein and are used in CML treatment. The resistance of CML patients to tyrosine kinase inhibitors has guided the search for new compounds that may induce apoptosis in Bcr-Abl+ leukemic cells and improve the disease treatment. Methods: In the present study, we investigated whether the L-amino acid oxidase isolated from Bothrops moojeni snake venom (BmooLAAO-I) (i) was cytotoxic to Bcr-Abl+ cell lines (HL-60.Bcr-Abl, K562-S, and K562-R), HL-60 (acute promyelocytic leukemia) cells, the non-tumor cell line HEK-293, and peripheral blood mononuclear cells (PBMC); and (ii) affected epigenetic mechanisms, including DNA methylation and microRNAs expression in vitro. Results: BmooLAAO-I induced ROS production, apoptosis, and differential DNA methylation pattern of regulatory apoptosis genes. The toxin upregulated expression of the pro-apoptotic genes BID and FADD and downregulated DFFA expression in leukemic cell lines, as well as increased miR-16 expression - whose major predicted target is the anti-apoptotic gene BCL2 - in Bcr-Abl+ cells. Conclusion: BmooLAAO-I exerts selective antitumor action mediated by H2O2 release and induces apoptosis, and alterations in epigenetic mechanisms. These results support future investigations on the effect of BmooLAAO-I on in vivo models to determine its potential in CML therapy.(AU)
Asunto(s)
Animales , Bothrops/genética , L-Aminoácido Oxidasa/análisis , Apoptosis , Epigenómica , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL PositivaRESUMEN
Resistance to apoptosis in chronic myeloid leukemia (CML) is associated with constitutive tyrosine kinase activity of the Bcr-Abl oncoprotein. The deregulated expression of apoptosis-related genes and alteration in epigenetic machinery may also contribute to apoptosis resistance in CML. Tyrosine kinase inhibitors target the Bcr-Abl oncoprotein and are used in CML treatment. The resistance of CML patients to tyrosine kinase inhibitors has guided the search for new compounds that may induce apoptosis in Bcr-Abl+ leukemic cells and improve the disease treatment. Methods: In the present study, we investigated whether the L-amino acid oxidase isolated from Bothrops moojeni snake venom (BmooLAAO-I) (i) was cytotoxic to Bcr-Abl+ cell lines (HL-60.Bcr-Abl, K562-S, and K562-R), HL-60 (acute promyelocytic leukemia) cells, the non-tumor cell line HEK-293, and peripheral blood mononuclear cells (PBMC); and (ii) affected epigenetic mechanisms, including DNA methylation and microRNAs expression in vitro. Results: BmooLAAO-I induced ROS production, apoptosis, and differential DNA methylation pattern of regulatory apoptosis genes. The toxin upregulated expression of the pro-apoptotic genes BID and FADD and downregulated DFFA expression in leukemic cell lines, as well as increased miR-16 expression - whose major predicted target is the anti-apoptotic gene BCL2 - in Bcr-Abl+ cells. Conclusion: BmooLAAO-I exerts selective antitumor action mediated by H2O2 release and induces apoptosis, and alterations in epigenetic mechanisms. These results support future investigations on the effect of BmooLAAO-I on in vivo models to determine its potential in CML therapy.(AU)
Asunto(s)
Animales , Leucemia Mielógena Crónica BCR-ABL Positiva , Apoptosis , Bothrops , L-Aminoácido Oxidasa , Técnicas In VitroRESUMEN
ABSTRACT Background: Human aplastic anemia is a hematologic disease characterized by low peripheral blood cell counts associated with reduced numbers of hematopoietic stem and progenitor cells and a hypocellular bone marrow. Thrombopoietin (THPO) regulates megakaryocytes, but it also stimulates hematopoietic stem and progenitor cells. Biallelic mutations in the THPO gene have been reported in a family with recessive inherited aplastic anemia. Methods: This study screened 83 patients diagnosed with acquired aplastic anemia and 92 paired healthy controls for germline variants in the THPO gene using Sanger sequencing. Results: Three common single nucleotide polymorphisms were identified in patients and controls at comparable allele frequencies. There was no correlation between the single nucleotide polymorphism carrier status and platelet counts at diagnosis. Conclusion: The presence of THPO polymorphisms is comparable between patients with acquired aplastic anemia and healthy individuals.
Asunto(s)
Humanos , Masculino , Femenino , Adolescente , Adulto , Trombopoyetina , Anemia AplásicaRESUMEN
ABSTRACT Background: Myelodysplastic syndromes (MDS) comprise a group of malignant clonal hematologic disorders characterized by ineffective hematopoiesis and propensity for progression to acute myeloid leukemia. Acquired mutations in the gene encoding RNA splicing factor 3B subunit 1 (SF3B1) are highly associated with the MDS subtypes presenting ring sideroblasts, and represent a specific nosological entity. The effects of these mutations on clinical outcomes are diverse and contrasting. Methods: A cohort of 91 Brazilian MDS patients, including patients with ring sideroblasts in the bone marrow, were screened for mutations in the SF3B1 hotspots (exons 12-15) by direct Sanger sequencing. Results: SF3B1 heterozygous mutations were identified in six patients (7%), all of them with ring sideroblasts, thus confirming the association between SF3B1 mutations and myelodysplastic syndrome subtypes bearing this morphologic feature (frequency of 6/13, p-value < 0.0001). Conclusion: This is the first screening of SF3B1 mutations in a cohort of Brazilian myelodysplastic syndrome patients. Our findings confirm that mutations in this splicing gene correlate with bone marrow ringed sideroblasts.
Asunto(s)
Humanos , Femenino , Síndromes Mielodisplásicos , Empalme del ARN , Factores de Empalme de ARN , Anemia Sideroblástica , MutaciónRESUMEN
BACKGROUND: Myelodysplastic syndromes (MDS) comprise a group of malignant clonal hematologic disorders characterized by ineffective hematopoiesis and propensity for progression to acute myeloid leukemia. Acquired mutations in the gene encoding RNA splicing factor 3B subunit 1 (SF3B1) are highly associated with the MDS subtypes presenting ring sideroblasts, and represent a specific nosological entity. The effects of these mutations on clinical outcomes are diverse and contrasting. METHODS: A cohort of 91 Brazilian MDS patients, including patients with ring sideroblasts in the bone marrow, were screened for mutations in the SF3B1 hotspots (exons 12-15) by direct Sanger sequencing. RESULTS: SF3B1 heterozygous mutations were identified in six patients (7%), all of them with ring sideroblasts, thus confirming the association between SF3B1 mutations and myelodysplastic syndrome subtypes bearing this morphologic feature (frequency of 6/13, p-value<0.0001). CONCLUSION: This is the first screening of SF3B1 mutations in a cohort of Brazilian myelodysplastic syndrome patients. Our findings confirm that mutations in this splicing gene correlate with bone marrow ringed sideroblasts.