Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Exp Eye Res ; 245: 109972, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871164

RESUMEN

In previous work, we have shown that the lens acts a reservoir of the antioxidant glutathione (GSH), capable of exporting this antioxidant into the ocular humors and potentially protecting the tissues of the eye that interface with these humors from oxidative stress. In this study, we have extended this work by examining whether the lens acts as a source of ascorbic acid (AsA) to maintain the high levels of AsA known to be present in the ocular humors either by the direct export of AsA into the humors and/or by functioning as a recycling site for AsA, via the direct uptake of oxidised ascorbate (DHA) from the humors, its regeneration to AsA in the lens and then its subsequent export back into the humors. To test this, human lenses of varying ages were cultured for 1 h under hypoxic conditions and AsA/DHA levels measured in the media and in the lens. Human lenses were also cultured in compartmentalised chambers to determine whether efflux of AsA/DHA occurs at the anterior or posterior surface. Immunohistochemistry was performed on human donor lenses and sections labelled with antibodies against GLUT1, a putative DHA uptake transporter. Vitreous humor was collected from patients undergoing vitrectomy who either had a natural clear lens, an artificial intraocular implant (IOL) or a cataractous lens, and AsA/DHA and GSH and oxidised GSH (GSSG) measured. We found that cultured human donor lenses released both AsA and DHA into the media. Culturing of lenses in a compartmentalised chamber revealed that AsA and DHA efflux occurs at both surfaces, with relatively equal amounts of AsA and DHA released from each surface. The posterior surface of the lens was shown to express the GLUT1 transporter. Analysis of vitreous samples from patients undergoing vitrectomy revealed that vitreous GSH and AsA levels were similar between the natural lens group, IOL and cataractous lens group. Taken together, while human donor lenses were shown to export AsA and DHA into the surrounding media, the amount of AsA and DHA released from donor lenses was low and not sufficient to sustain the high levels of total AsA normally present in the humors. This suggests that although the lens is not the main source for maintaining high levels of AsA in the ocular humors, the lens may help to support local AsA levels close to the lens.

2.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798449

RESUMEN

Human lens fiber membrane intrinsic protein MP20 is the second most abundant membrane protein of the human eye lens. Despite decades of effort its structure and function remained elusive. Here, we determined the MicroED structure of full-length human MP20 in lipidic-cubic phase to a resolution of 3.5 Å. MP20 forms tetramers each of which contain 4 transmembrane α-helices that are packed against one another forming a helical bundle. Both the N- and C- termini of MP20 are cytoplasmic. We found that each MP20 tetramer formed adhesive interactions with an opposing tetramer in a head-to-head fashion. These interactions were mediated by the extracellular loops of the protein. The dimensions of the MP20 adhesive junctions are consistent with the 11 nm thin lens junctions. Investigation of MP20 localization in human lenses indicated that in young fiber cells MP20 was stored intracellularly in vesicles and upon fiber cell maturation MP20 inserted into the plasma membrane and restricted the extracellular space. Together these results suggest that MP20 forms lens thin junctions in vivo confirming its role as a structural protein in the human eye lens, essential for its optical transparency.

3.
Exp Eye Res ; 240: 109828, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354944

RESUMEN

Transport of water is critical for maintaining the transparency of the avascular lens, and the lens is known to express at least five distinctly different water channels from the Aquaporin (AQP) family of proteins. In this study we report on the identification of a sixth lens AQP, AQP3 an aquaglyceroporin, which in addition to water also transports glycerol and H2O2. AQP3 was identified at the transcript level and protein levels using RT-PCR and Western blotting, respectively, in the mouse, rat, bovine and human lens, showing that its expression is conserved in the mammalian lens. Western blotting showed AQP3 in the lens exists as 25 kDa non-glycosylated and 37 kDa glycosylated monomeric forms in all lens species. To identify the regions in the lens where AQP3 is expressed Western blotting was repeated using epithelial, outer cortical and inner cortical/core fractions isolated from the mouse lens. AQP3 was found in all lens regions, with the highest signal of non-glycosylated AQP3 being found in the epithelium. While in the inner cortex/core region AQP3 signal was not only lower but was predominately from the glycosylated form of AQP3. Immunolabelling of lens sections with AQP3 antibodies confirmed that AQP3 is found in all regions of the adult mouse, and also revealed that the subcellular distribution of AQP3 changes as a function of fiber cell differentiation. In epithelial and peripheral fiber cells of the outer cortex AQP3 labelling was predominately associated with membrane vesicles in the cytoplasm, but in the deeper regions of the lens AQP3 labelling was associated with the plasma membranes of fiber cells located in the inner cortex and core of the lens. To determine how this adult pattern of AQP3 subcellular distribution was established, immunolabelling for AQP3 was performed on embryonic and postnatal lenses. AQP3 expression was first detected on embryonic day (E) 11 in the membranes of primary fiber cells that have started to elongate and fill the lumen of the lens vesicle, while later at E16 the AQP3 labelling in the primary fiber cells had shifted to a predominately cytoplasmic location. In the following postnatal (P) stages of lens growth at P3 and P6, AQP3 labelling remained cytoplasmic across all regions of the lens and it was not until P15 when the pattern of localisation of AQP3 changed to an adult distribution with cytoplasmic labelling detected in the outer cortex and membrane localisation detected in the inner cortex and core of the lens. Comparison of the AQP3 labelling pattern to those obtained previously for AQP0 and AQP5 showed that the subcellular distribution was more similar to AQP5 than AQP0, but there were still significant differences that suggest AQP3 may have unique roles in the maintenance of lens transparency.


Asunto(s)
Acuaporina 3 , Cristalino , Animales , Bovinos , Humanos , Ratones , Ratas , Acuagliceroporinas/metabolismo , Acuaporina 3/genética , Acuaporina 3/metabolismo , Peróxido de Hidrógeno/metabolismo , Cristalino/metabolismo , Mamíferos , Agua/metabolismo
4.
Ophthalmol Sci ; 4(1): 100404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38027421

RESUMEN

Objective: To investigate whether a redistribution of water within the crystalline lens is associated with the shape deformation that occurs during accommodation. Design: Observational, cross sectional study. Subjects: Eleven young adults without presbyopia (aged 18-39 years) and 9 middle-aged adults with presbyopia (aged 40-55 years). Methods: Magnetic resonance imaging (MRI) scans of the lens were acquired on a 3 Tesla clinical MRI scanner, without and with the presentation of a 3 Diopter accommodative stimulus. The MRIs were postprocessed using established methods to extract the geometric dimensions and spatial maps of water distribution of the lens. Main Outcome Measures: Accommodative changes in the full 3-dimensional description of lens shape, the lens total-water distribution profile, and the lens free-water distribution profile. Results: Viewing of an accommodative stimulus by young subjects elicited an elastic shape deformation of the lens consistent with accommodation that was associated with an elevated, smoother free-water distribution, primarily in the anterior region of the lens. In contrast, viewing of an accommodative stimulus by presbyopic subjects produced an atypical shape deformation of the lens that was instead associated with a lowered free-water distribution, primarily in the anterior region of the lens. No discernible changes to the lens total-water distribution were observed in response to the accommodative stimulus in either subject cohort. Conclusions: The present study suggests that protein-mediated alterations in the free-water distribution of the anterior region of the lens influence the shape deformation in accommodation, presenting pharmacological modulation of free-water distribution as an attractive novel approach for treating presbyopia. Financial Disclosures: The authors have no proprietary or commercial interest in any materials discussed in this article.

5.
Exp Eye Res ; 237: 109719, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37951336

RESUMEN

Presbyopia is caused by age-related lenticular hardening, resulting in near vision loss, and it occurs in almost every individual aged ≥50 years. The lens experiences mechanical pressure during for focal adjustment to change its thickness. As lenticular stiffening results in incomplete thickness changes, near vision is reduced, which is known as presbyopia. Piezo1 is a mechanosensitive channel that constantly senses pressure changes during the regulation of visual acuity, and changes in Piezo1 channel activity may contribute to presbyopia. However, no studies have reported on Piezo1 activation or the onset of presbyopia. To elucidate the relevance of Piezo1 activation and cross-linking in the development of presbyopia, we analysed the function of Piezo1 in the lens. The addition of Yoda1, a Piezo1 activator, induced an increase in transglutaminase 2 (TGM2) mRNA expression and activity through the extra-cellular signal-regulated kinase (ERK) 1/2 and c-Jun-NH2-terminal kinase1/2 pathways. In ex vivo lenses, Yoda1 treatment induced γ-crystallin cross-linking via TMG2 activation. Furthermore, Yoda1 eye-drops in mice led to lenticular hardening via TGM2 induction and activation in vivo, suggesting that Yoda1-treated animals could serve as a model for presbyopia. Our findings indicate that this presbyopia-animal model could be useful for screening drugs for lens-stiffening inhibition.


Asunto(s)
Canales Iónicos , Presbiopía , Ratones , Animales , Canales Iónicos/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Esclerosis , Transporte Biológico
6.
J Physiol ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843390

RESUMEN

The ocular lens is an important determinant of overall vision quality whose refractive and transparent properties change throughout life. The lens operates an internal microcirculation system that generates circulating fluxes of ions, water and nutrients that maintain the transparency and refractive properties of the lens. This flow of water generates a substantial hydrostatic pressure gradient which is regulated by a dual feedback system that uses the mechanosensitive channels TRPV1 and TRPV4 to sense decreases and increases, respectively, in the pressure gradient. This regulation of water flow (pressure) and hence overall lens water content, sets the two key parameters, lens geometry and the gradient of refractive index, which determine the refractive properties of the lens. Here we focus on the roles played by the aquaporin family of water channels in mediating lens water fluxes, with a specific focus on AQP5 as a regulated water channel in the lens. We show that in addition to regulating the activity of ion transporters, which generate local osmotic gradients that drive lens water flow, the TRPV1/4-mediated dual feedback system also modulates the membrane trafficking of AQP5 in the anterior influx pathway and equatorial efflux zone of the lens. Since both lens pressure and AQP5-mediated water permeability ( P H 2 O ${P_{{{\mathrm{H}}_{\mathrm{2}}}{\mathrm{O}}}}$ ) can be altered by changes in the tension applied to the lens surface via modulating ciliary muscle contraction we propose extrinsic modulation of lens water flow as a potential mechanism to alter the refractive properties of the lens to ensure light remains focused on the retina throughout life.

7.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240426

RESUMEN

In mice, the contraction of the ciliary muscle via the administration of pilocarpine reduces the zonular tension applied to the lens and activates the TRPV1-mediated arm of a dual feedback system that regulates the lens' hydrostatic pressure gradient. In the rat lens, this pilocarpine-induced reduction in zonular tension also causes the water channel AQP5 to be removed from the membranes of fiber cells located in the anterior influx and equatorial efflux zones. Here, we determined whether this pilocarpine-induced membrane trafficking of AQP5 is also regulated by the activation of TRPV1. Using microelectrode-based methods to measure surface pressure, we found that pilocarpine also increased pressure in the rat lenses via the activation of TRPV1, while pilocarpine-induced removal of AQP5 from the membrane observed using immunolabelling was abolished by pre-incubation of the lenses with a TRPV1 inhibitor. In contrast, mimicking the actions of pilocarpine by blocking TRPV4 and then activating TRPV1 resulted in sustained increase in pressure and the removal of AQP5 from the anterior influx and equatorial efflux zones. These results show that the removal of AQP5 in response to a decrease in zonular tension is mediated by TRPV1 and suggest that regional changes to PH2O contribute to lens hydrostatic pressure gradient regulation.


Asunto(s)
Acuaporinas , Cristalino , Ratas , Ratones , Animales , Pilocarpina/farmacología , Membranas , Acuaporina 5 , Canales Catiónicos TRPV
8.
Invest Ophthalmol Vis Sci ; 64(4): 24, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37079314

RESUMEN

Purpose: The purpose of this study was to utilize in vivo magnetic resonance imaging (MRI) and optical modeling to investigate how changes in water transport, lens curvature, and gradient refractive index (GRIN) alter the power of the mouse lens as a function of age. Methods: Lenses of male C57BL/6 wild-type mice aged between 3 weeks and 12 months (N = 4 mice per age group) were imaged using a 7T MRI scanner. Measurements of lens shape and the distribution of T2 (water-bound protein ratios) and T1 (free water content) values were extracted from MRI images. T2 values were converted into the refractive index (n) using an age-corrected calibration equation to calculate the GRIN at different ages. GRIN maps and shape parameters were inputted into an optical model to determine ageing effects on lens power and spherical aberration. Results: The mouse lens showed two growth phases. From 3 weeks to 3 months, T2 decreased, GRIN increased, and T1 decreased. This was accompanied by increased lens thickness, volume, and surface radii of curvatures. The refractive power of the lens also increased significantly, and a negative spherical aberration was developed and maintained. Between 6 and 12 months of age, all physiological, geometrical, and optical parameters remained constant, although the lens continued to grow. Conclusions: In the first 3 months, the mouse lens power increased as a result of changes in shape and in the GRIN, the latter driven by the decreased water content of the lens nucleus. Further research into the mechanisms regulating this decrease in mouse lens water could improve our understanding of how lens power changes during emmetropization in the developing human lens.


Asunto(s)
Cristalino , Refracción Ocular , Masculino , Humanos , Animales , Ratones , Recién Nacido , Tomografía de Coherencia Óptica/métodos , Ratones Endogámicos C57BL , Cristalino/fisiología , Imagen por Resonancia Magnética
9.
Prog Retin Eye Res ; 95: 101152, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36470825

RESUMEN

The lens is an important determinant of overall vision quality whose refractive and transparent properties change throughout life. Alterations to the refractive properties of the lens contribute to the process of emmetropisation in early childhood, and then the gradual loss in lens power that occurs throughout adulthood. In parallel to these changes to lens refractive power, age-dependent increases in lens stiffness and light scattering result in presbyopia and cataract, respectively. In recent years it has been confirmed that the lens operates an internal microcirculation system that generates circulating fluxes of ions, water and nutrients that maintain the refractive properties and transparency of the lens. By actively regulating lens water content, the microcirculation system controls two key parameters, lens geometry and the gradient of refractive index, which together determine the refractive properties of the lens. Furthermore, by delivering nutrients and antioxidants to the lens nucleus, the microcirculation system maintains lens transparency by preventing crystallin aggregation. Interestingly, the solubility, intramolecular packing and refractive index increment of crystallin proteins can be modulated by the ability of crystallin proteins to dynamically bind water, a processed called syneresis. In a series of previous studies it has been shown that the application of external pressure to the lens can induce syneresis. Since it is now known that lens water transport generates a substantial internal hydrostatic pressure gradient, we speculate that the microcirculation is capable of regulating crystallin function by altering the amount of water bound to lens proteins in the nucleus, where the pressure gradient and protein concentrations are the highest. Here we present evidence for the links between lens transport, pressure, syneresis and protein function. Furthermore, because the lens pressure gradient can be regulated by intrinsic and extrinsic stimuli, we suggest mechanisms via which this integrative system can be used to effect the changes to the refractive and transparent properties of the lens that are observed across our lifetime.


Asunto(s)
Catarata , Cristalinas , Cristalino , Preescolar , Humanos , Adulto , Cristalino/metabolismo , Catarata/metabolismo , Refracción Ocular
10.
Mol Vis ; 29: 274-288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38222448

RESUMEN

Purpose: The cystine/glutamate antiporter is involved in the export of intracellular glutamate in exchange for extracellular cystine. Glutamate is the main neurotransmitter in the retina and plays a key metabolic role as a major anaplerotic substrate in the tricarboxylic acid cycle to generate adenosine triphosphate (ATP). In addition, glutamate is also involved in the outer plexiform glutamate-glutamine cycle, which links photoreceptors and supporting Müller cells and assists in maintaining photoreceptor neurotransmitter supply. In this study, we investigated the role of xCT, the light chain subunit responsible for antiporter function, in glutamate pathways in the mouse retina using an xCT knockout mouse. As xCT is a glutamate exporter, we hypothesized that loss of xCT function may influence the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate. Methods: Retinas of C57BL/6J wild-type (WT) and xCT knockout (KO) mice of either sex were analyzed from 6 weeks to 12 months of age. Biochemical assays were used to determine the effect of loss of xCT on glycolysis and energy metabolism by measuring lactate dehydrogenase activity and ATP levels. Next, biochemical assays were used to measure whole-tissue glutamate and glutamine levels, while silver-intensified immunogold labeling was performed on 6-week and 9-month-old retinas to visualize and quantify the distribution of glutamate, glutamine, and related neurochemical substrates gamma-aminobutyric acid (GABA) and glycine in the different layers of the retina. Results: Biochemical analysis revealed that loss of xCT function did not alter the lactate dehydrogenase activity, ATP levels, or glutamate and glutamine contents in whole retinas in any age group. However, at 6 weeks of age, the xCT KO retinas revealed altered glutamate distribution compared with the age-matched WT retinas, with accumulation of glutamate in the photoreceptors and outer plexiform layer. In addition, at 6 weeks and 9 months of age, the xCT KO retinas also showed altered glutamine distribution compared with the WT retinas, with glutamine labeling significantly decreased in Müller cell bodies. No significant difference in GABA or glycine distribution were found between the WT and xCT KO retinas at 6 weeks or 9 months of age. Conclusion: Loss of xCT function results in glutamate metabolic disruption through the accumulation of glutamate in photoreceptors and a reduced uptake of glutamate by Müller cells, which in turn decreases glutamine production. These findings support the idea that xCT plays a role in the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate and derived neurotransmitters in the retina.


Asunto(s)
Ácido Glutámico , Glutamina , Ratones , Animales , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Cistina/metabolismo , Cistina/farmacología , Ratones Noqueados , Antiportadores/metabolismo , Ratones Endogámicos C57BL , Retina/metabolismo , Adenosina Trifosfato/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Glicina/metabolismo , Neurotransmisores , Lactato Deshidrogenasas/metabolismo
12.
Mol Vis ; 28: 245-256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284672

RESUMEN

Purpose: Purinergic signaling pathways activated by extracellular ATP have been implicated in the regulation of lens volume and transparency. In this study, we investigated the location of ATP release from whole rat lenses and the mechanism by which osmotic challenge alters such ATP release. Methods: Three-week-old rat lenses were cultured for 1 h in isotonic artificial aqueous humor (AAH) with no extracellular Ca2+, hypotonic AAH, or hypertonic AAH. The hypotonic AAH-treated lenses were also cultured in the absence or presence of connexin hemichannels and the pannexin channel blockers carbenoxolone, probenecid, and flufenamic acid. The ATP concentration in the AAH was determined using a Luciferin/luciferase bioluminescence assay. To visualize sites of ATP release induced by hemichannel and/or pannexin opening, the lenses were cultured in different AAH solutions, as described above, and incubated in the presence of Lucifer yellow (MW = 456 Da) and Texas red-dextran (MW = 10 kDa) for 1 h. Then the lenses were fixed, cryosectioned, and imaged using confocal microscopy to visualize areas of dye uptake from the extracellular space. Results: The incubation of the rat lenses in the AAH that lacked Ca2+ induced a significant increase in the extracellular ATP concentration. This was associated with an increased uptake of Lucifer yellow but not of Texas red-dextran in a discrete region of the outer cortex of the lens. Hypotonic stress caused a similar increase in ATP release and an increase in the uptake of Lucifer yellow in the outer cortex, which was significantly reduced by probenecid but not by carbenoxolone or flufenamic acid. Conclusions: Our data suggest that in response to hypotonic stress, the intact rat lens is capable of releasing ATP. This seems to be mediated via the opening of pannexin channels in a specific zone of the outer cortex of the lens. Our results support the growing evidence that the lens actively regulates its volume and therefore, its optical properties, via puerinergic signaling pathways.


Asunto(s)
Carbenoxolona , Probenecid , Ratas , Animales , Probenecid/farmacología , Carbenoxolona/farmacología , Ácido Flufenámico , Dextranos , Conexinas/metabolismo , Adenosina Trifosfato/metabolismo
13.
Front Physiol ; 13: 901407, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711316

RESUMEN

Purpose: To spatially correlate the pattern of glucose uptake to glucose transporter distributions in cultured lenses and map glucose metabolism in different lens regions. Methods: Ex vivo bovine lenses were incubated in artificial aqueous humour containing normoglycaemic stable isotopically-labelled (SIL) glucose (5 mM) for 5 min-20 h. Following incubations, lenses were frozen for subsequent matrix-assisted laser desorption/ionisation (MALDI) imaging mass spectrometry (IMS) analysis using high resolution mass spectrometry. Manually dissected, SIL-incubated lenses were subjected to gas chromatography-mass spectrometry (GC-MS) to verify the identity of metabolites detected by MALDI-IMS. Normal, unincubated lenses were manually dissected into epithelium flat mounts and fibre cell fractions and then subjected to either gel-based proteomic analysis (Gel-LC/MS) to detect facilitative glucose transporters (GLUTs) by liquid chromatography tandem mass spectrometry (LC-MS/MS). Indirect immunofluorescence and confocal microscopy of axial lens sections from unincubated fixed lenses labelled with primary antibodies specific for GLUT 1 or GLUT 3 were utilised for protein localisation. Results: SIL glucose uptake at 5 min was concentrated in the equatorial region of the lens. At later timepoints, glucose gradually distributed throughout the epithelium and the cortical lens fibres, and eventually the deeper lens nucleus. SIL glucose metabolites found in glycolysis, the sorbitol pathway, the pentose phosphate pathway, and UDP-glucose formation were mapped to specific lens regions, with distinct regional signal changes up to 20 h of incubation. Spatial proteomic analysis of the lens epithelium detected GLUT1 and GLUT3. GLUT3 was in higher abundance than GLUT1 throughout the epithelium, while GLUT1 was more abundant in lens fibre cells. Immunohistochemical mapping localised GLUT1 to epithelial and cortical fibre cell membranes. Conclusion: The major uptake site of glucose in the bovine lens has been mapped to the lens equator. SIL glucose is rapidly metabolised in epithelial and fibre cells to many metabolites, which are most abundant in the metabolically more active cortical fibre cells in comparison to central fibres, with low levels of metabolic activity observed in the nucleus.

14.
Front Physiol ; 13: 882550, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514349

RESUMEN

Cataract and presbyopia are the leading cause of vision loss and impaired vision, respectively, worldwide. Changes in lens biochemistry and physiology with age are responsible for vision impairment, yet the specific molecular changes that underpin such changes are not entirely understood. In order to preserve transparency over decades of life, the lens establishes and maintains a microcirculation system (MCS) that, through spatially localized ion pumps, induces circulation of water and nutrients into (influx) and metabolites out of (outflow and efflux) the lens. Aquaporins (AQPs) are predicted to play important roles in the establishment and maintenance of local and global water flow throughout the lens. This review discusses the structure and function of lens AQPs and, importantly, their spatial localization that is likely key to proper water flow through the MCS. Moreover, age-related changes are detailed and their predicted effects on the MCS are discussed leading to an updated MCS model. Lastly, the potential therapeutic targeting of AQPs for prevention or treatment of cataract and presbyopia is discussed.

15.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R263-R279, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35107027

RESUMEN

The optical properties of the bovine lens have been shown to be actively maintained by an internal microcirculation system. In the mouse lens, this water transport through gap junction channels generates an intracellular hydrostatic pressure gradient, which is subjected to a dual feedback regulation that is mediated by the reciprocal modulation of the transient receptor potential vanilloid channels TRPV1 and TRPV4. Here we test whether a similar feedback regulation of pressure exists in the bovine lens and whether it regulates overall lens optics. Lens pressure was measured using a microelectrode/pico-injector-based pressure measurement system, and lens optics were monitored in organ cultured lenses using a laser ray tracing system. Like the mouse, the bovine lenses exhibited a similar pressure gradient (0 to 340 mmHg). Activation of TRPV1 with capsaicin caused a biphasic increase in surface pressure, while activation of TRPV4 with GSK1016790A caused a biphasic decrease in pressure. These biphasic responses were abolished if lenses were preincubated with either the TRPV1 inhibitor A-889425 or the TRPV4 inhibitor HC-067047. While modulation of lens pressure by TRPV1 and TRPV4 had minimal effects on lens power and overall vision quality, the changes in lens pressure did induce opposing changes to lens geometry and its gradient of refractive index that effectively kept lens power constant. Hence, our results suggest that the TRPV1/4-mediated feedback control of lens hydrostatic pressure operates to ensure that any fluctuations in lens water transport, and consequently water content, do not result in changes in lens power and therefore overall vision quality.


Asunto(s)
Cristalino , Canales Catiónicos TRPV , Animales , Capsaicina/farmacología , Bovinos , Presión Hidrostática , Ratones , Agua/farmacología
16.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884463

RESUMEN

Lens water transport generates a hydrostatic pressure gradient that is regulated by a dual-feedback system that utilizes the mechanosensitive transient receptor potential vanilloid (TRPV) channels, TRPV1 and TRPV4, to sense changes in mechanical tension and extracellular osmolarity. Here, we investigate whether the modulation of TRPV1 or TRPV4 activity dynamically affects their membrane trafficking. Mouse lenses were incubated in either pilocarpine or tropicamide to alter zonular tension, exposed to osmotic stress, or the TRPV1 and TRPV4 activators capsaicin andGSK1016790A (GSK101), and the effect on the TRPV1 and TRPV4 membrane trafficking in peripheral fiber cells visualized using confocal microscopy. Decreases in zonular tension caused the removal of TRPV4 from the membrane of peripheral fiber cells. Hypotonic challenge had no effect on TRPV1, but increased the membrane localization of TRPV4. Hypertonic challenge caused the insertion of TRPV1 and the removal of TRPV4 from the membranes of peripheral fiber cells. Capsaicin caused an increase in TRPV4 membrane localization, but had no effect on TRPV1; while GSK101 decreased the membrane localization of TRPV4 and increased the membrane localization of TRPV1. These reciprocal changes in TRPV1/4 membrane localization are consistent with the channels acting as mechanosensitive transducers of a dual-feedback pathway that regulates lens water transport.


Asunto(s)
Membrana Celular/metabolismo , Cristalino/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Capsaicina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Presión Hidrostática/efectos adversos , Ratones , Presión Osmótica/efectos de los fármacos
17.
Exp Eye Res ; 212: 108790, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34648773

RESUMEN

Age related nuclear (ARN) cataracts in humans take years to form and so experimental models have been developed to mimic the process in animals as a means of better understanding the etiology of nuclear cataracts in humans. A major limitation with these animal models is that many of the biochemical and physiological changes are not typical of that seen in human ARN cataract. In this review, we highlight the work of Frank Giblin and colleagues who established an in vivo animal model that replicates many of the changes observed in human ARN cataract. This model involves exposing aged guinea pigs to hyperbaric oxygen (HBO), which by causing the depletion of the antioxidant glutathione (GSH) specifically in the lens nucleus, produces oxidative changes to nuclear proteins, nuclear light scattering and a myopic shift in lens power that mimics the change that often precedes cataract development in humans. However, this model involves multiple HBO treatments per week, with sometimes up to a total of 100 treatments, spanning up to eight months, which is both costly and time consuming. To address these issues, Giblin developed an in vitro model that used rabbit lenses exposed to HBO for several hours which was subsequently shown to replicate many of the changes observed in human ARN cataract. These experiments suggest that HBO treatment of in vitro animal lenses may serve as a more economical and efficient model to study the development of cataract. Inspired by these experiments, we investigated whether exposure of young bovine lenses to HBO for 15 h could also serve as a suitable acute model of ARN cataract. We found that while this model is able to exhibit some of the biochemical and physiological changes associated with ARN cataract, the decrease in lens power we observed was more characteristic of the hyperopic shift in refraction associated with ageing. Future work will investigate whether HBO treatment to age the bovine lens in combination with an oxidative stressor such as UV light will induce refractive changes more closely associated with human ARN cataract. This will be important as developing an animal model that replicates the changes to lens biochemistry, physiology and optics observed in human ARN cataracts is urgently required to facilitate the identification and testing of anti-cataract therapies that are effective in humans.


Asunto(s)
Envejecimiento , Catarata/metabolismo , Oxigenoterapia Hiperbárica/métodos , Cristalino/química , Óptica y Fotónica , Animales , Catarata/fisiopatología , Bovinos , Humanos , Cristalino/diagnóstico por imagen , Cristalino/fisiología , Microscopía con Lámpara de Hendidura
18.
Invest Ophthalmol Vis Sci ; 62(9): 33, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34293079

RESUMEN

Purpose: To use magnetic resonance imaging (MRI) to measure age-dependent changes in total and free water in human lenses in vivo. Methods: Sixty-four healthy adults aged 18 to 86 years were recruited, fitted with a 32-channel head receiver coil, and placed in a 3 Tesla clinical MR scanner. Scans of the crystalline lens were obtained using a volumetric interpolated breath-hold examination sequence with dual flip angles, which were corrected for field inhomogeneity post-acquisition using a B1-map obtained using a turbo-FLASH sequence. The spatial distribution and content of corrected total (ρlens) and free (T1) water along the lens optical axis were extracted using custom-written code. Results: Lens total water distribution and content did not change with age (all P > 0.05). In contrast to total water, a gradient in free water content that was highest in the periphery relative to the center was present in lenses across all ages. However, this initially parabolic free water gradient gradually developed an enhanced central plateau, as indicated by increasing profile shape parameter values (anterior: 0.067/y, P = 0.004; posterior: 0.050/y, P = 0.020) and central free water content (1.932 ms/y, P = 0.022) with age. Conclusions: MRI can obtain repeatable total and free water measurements of in vivo human lenses. The observation that the lens steady-state free, but not total, water gradient is abolished with age raises the possibility that alterations in protein-water interactions are an underlying cause of the degradation in lens optics and overall vision observed with aging.


Asunto(s)
Envejecimiento/metabolismo , Agua Corporal/metabolismo , Cristalino/metabolismo , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Femenino , Humanos , Cristalino/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Valores de Referencia , Adulto Joven
19.
Nutrients ; 12(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066702

RESUMEN

Cataracts or clouding of the lens is the leading cause of blindness in the world. Age and diabetes are major risk factors, and with an increasing aging and diabetic population, the burden of cataracts will grow. Cataract surgery is an effective way to restore vision; however, alternatives to cataract surgery are required to reduce the looming cataract epidemic. Since it is well established that oxidative damage plays a major role in the etiology of cataracts, antioxidants have been promoted as therapies to delay and/or prevent cataracts. However, many antioxidant interventions including vitamin C have produced mixed results as anti-cataract therapies. Progress has been made towards our understanding of lens physiology and the mechanisms involved in the delivery and uptake of antioxidants to the lens which may guide future studies aimed at addressing some of the inconsistencies seen in previous animal and human studies. Of interest is the potential for vitamin C based supplements in delaying the onset of cataracts post vitrectomy which occurs in up to 80% of patients within two years. These targeted approaches are required to reduce the burden of cataract on hospitals and improve the quality of life of our aging and diabetic population.


Asunto(s)
Antioxidantes , Ácido Ascórbico/administración & dosificación , Catarata/etiología , Catarata/prevención & control , Suplementos Dietéticos , Fenómenos Fisiológicos de la Nutrición/fisiología , Envejecimiento , Animales , Ácido Ascórbico/farmacología , Complicaciones de la Diabetes/complicaciones , Humanos , Estrés Oxidativo , Factores de Riesgo , Vitrectomía/efectos adversos , Cuerpo Vítreo
20.
J Mass Spectrom ; 56(4): e4666, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33089566

RESUMEN

The spatial resolution of microdissection-based analytical methods to detect ocular lens glucose uptake, transport and metabolism are poor, whereas the multiplexing capability of fluorescence microscopy-based approaches to simultaneously detect multiple glucose metabolites is limited in comparison with mass spectrometry-based methods. To better understand lens glucose transport and metabolism, a more highly spatially resolved technique that maintains the fragile ocular lens tissue is required. In this study, a sample preparation method for matrix-assisted laser desorption/ionisation imaging mass spectrometry (MALDI IMS) analysis of ocular lens glucose uptake and metabolism has been evaluated and optimised. Matrix choice, tissue preparation and normalisation strategy were determined using negative ion mode MALDI-Fourier transform-ion cyclotron resonance MS of bovine lens tissue and validation performed using gas chromatography-MS. An internal standard was applied concurrently with N-(1-naphthyl)ethylenediamine dihydrochloride (NEDC) matrix to limit cracking of the fresh frozen lens tissue sections. MALDI IMS data were collected at a variety of spatial resolutions to detect both endogenous lens metabolites and stable isotopically labelled glucose introduced by ex vivo lens culture. Using this approach, initial steps in important metabolic processes that are linked to diabetic cataract formation were spatially mapped in the bovine lens. In the future, this method can be applied to study the dynamics of glucose uptake, transport and metabolic flux to aid in the study of diabetic lens cataract pathophysiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...