Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Phys Rev Lett ; 102(19): 196402, 2009 May 15.
Article En | MEDLINE | ID: mdl-19518980

We report on precise low-temperature specific-heat measurements, C(T), of YbRh2Si2 in the vicinity of the antiferromagnetic phase transition on a single crystal of superior quality (residual resistivity ratio of approximately 150). We observe a very sharp peak at T_{N}=72 mK with absolute values as high as C/T=8 J/mol K2. A detailed analysis of the critical exponent alpha around T_{N} reveals alpha=0.38 which differs significantly from those of the conventional universality classes in the Ginzburg-Landau theory, where alpha< or =0.11. Thermal-expansion measurements corroborate this large positive critical exponent. These results provide insight into the nature of the critical magnetic fluctuations at a temperature-driven phase transition close to a quantum critical point.

2.
J Phys Condens Matter ; 21(23): 235604, 2009 Jun 10.
Article En | MEDLINE | ID: mdl-21825591

Crystal structure, specific heat, thermal expansion, magnetic susceptibility and electrical resistivity studies of the heavy fermion system CeNi(9-x)Cu(x)Ge(4) (0≤x≤1) reveal a continuous tuning of the ground state by Ni/Cu substitution from an effectively fourfold-degenerate non-magnetic Kondo ground state of CeNi(9)Ge(4) (with pronounced non-Fermi-liquid features) towards a magnetically ordered, effectively twofold-degenerate ground state in CeNi(8)CuGe(4) with T(N) = 175 ± 5 mK. Quantum critical behavior, [Formula: see text], is observed for [Formula: see text]. Hitherto, CeNi(9-x)Cu(x)Ge(4) represents the first system where a substitution-driven quantum phase transition is connected not only with changes of the relative strength of the Kondo effect and RKKY interaction, but also with a reduction of the effective crystal field ground state degeneracy.

3.
Phys Rev Lett ; 100(13): 136401, 2008 Apr 04.
Article En | MEDLINE | ID: mdl-18517974

The nature of quantum criticality in CeCoIn5 is studied by low-temperature thermal expansion alpha(T). At the field-induced quantum critical point at H = 5 T a crossover scale T* approximately 0.3 K is observed, separating alpha(T)/T proportional, variant T(-1) from a weaker T(-1/2) divergence. We ascribe this change to a crossover in the dimensionality of the critical fluctuations which may be coupled to a change from unconventional to conventional quantum criticality. Disorder, whose effect on quantum criticality is studied in CeCoIn(5-x)Sn(x) (0 < or = x < or = 0.18), shifts T* towards higher temperatures.

...