Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
World J Gastrointest Surg ; 16(2): 491-502, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38463355

BACKGROUND: Transjugular intrahepatic portosystemic shunt (TIPS) placement is a procedure that can effectively treat complications of portal hypertension, such as variceal bleeding and refractory ascites. However, there have been no specific studies on predicting long-term survival after TIPS placement. AIM: To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS. METHODS: A retrospective analysis was conducted on a cohort of 224 patients who underwent TIPS implantation. Through univariate and multivariate Cox regression analyses, various factors were examined for their ability to predict survival at 6 years after TIPS. Consequently, a composite score was formulated, encompassing the indication, shunt reasonability, portal venous pressure gradient (PPG) after TIPS, percentage decrease in portal venous pressure (PVP), indocyanine green retention rate at 15 min (ICGR15) and total bilirubin (Tbil) level. Furthermore, the performance of the newly developed Cox (NDC) model was evaluated in an internal validation cohort and compared with that of a series of existing models. RESULTS: The indication (variceal bleeding or ascites), shunt reasonability (reasonable or unreasonable), ICGR15, postoperative PPG, percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement. The NDC model incorporated these parameters and successfully identified patients at high risk, exhibiting a notably elevated mortality rate following the TIPS procedure, as observed in both the training and validation cohorts. Additionally, in terms of predicting the long-term survival rate, the performance of the NDC model was significantly better than that of the other four models [Child-Pugh, model for end-stage liver disease (MELD), MELD-sodium and the Freiburg index of post-TIPS survival]. CONCLUSION: The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis, help identify high-risk patients and guide follow-up management after TIPS implantation.

2.
Sci Rep ; 13(1): 15244, 2023 09 14.
Article En | MEDLINE | ID: mdl-37709823

We aim to develop a nomogram to predict overt hepatic encephalopathy (OHE) after transjugular intrahepatic portosystemic shunt (TIPS) in patients with portal hypertension, according to demographic/clinical indicators such as age, creatinine, blood ammonia, indocyanine green retention rate at 15 min (ICG-R15) and percentage of Portal pressure gradient (PPG) decline. In this retrospective study, 296 patients with portal hypertension who received elective TIPS in Beijing Shijitan Hospital from June 2018 to June 2020 were included. These patients were randomly divided into a training cohort (n = 207) and a validation cohort (n = 89). According to the occurrence of OHE, patients were assigned to OHE group and non-OHE group. Both univariate and multivariate analyses were performed to determine independent variables for predicting OHE after TIPS. Accordingly, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to compare the accuracy and superiority of a novel model with conventional Child-Pugh and MELD scoring model. Age (OR 1.036, 95% CI 1.002-1.070, p = 0.037), Creatinine (OR 1.011, 95% CI 1.003-1.019, p = 0.009), Blood ammonia (OR 1.025, 95% CI 1.006-1.044, p = 0.011), ICG-R15 (OR 1.030, 95% CI 1.009-1.052, p = 0.004) and Percentage decline in PPG (OR 1.068, 95% CI 1.029-1.109, p = 0.001) were independent risk factors for OHE after TIPS using multifactorial analysis. A nomogram was constructed using a well-fit calibration curve for each of these five covariates. When compared to Child-Pugh and MELD score, this new nomogram has a better predictive value (C-index = 0.828, 95% CI 0.761-0.896). Consistently, this finding was reproduceable in validation cohort and confirmed with DCA. A unique nomogram was developed to predict OHE after TIPS in patients with PHT, with a high prediction sensitivity and specificity performance than commonly applied scoring systems.


Hepatic Encephalopathy , Hypertension, Portal , Portasystemic Shunt, Transjugular Intrahepatic , Humans , Hepatic Encephalopathy/etiology , Ammonia , Creatinine , Nomograms , Portasystemic Shunt, Transjugular Intrahepatic/adverse effects , Retrospective Studies , Hypertension, Portal/etiology , Hypertension, Portal/surgery , Indocyanine Green
3.
World J Clin Cases ; 10(14): 4460-4469, 2022 May 16.
Article En | MEDLINE | ID: mdl-35663094

BACKGROUND: The liver is one of the most important organs in the human body, with functions such as detoxification, digestion, and blood coagulation. In terms of vascular anatomy, the liver is divided into the left and the right liver by the main portal vein, and there are three hepatic efferent veins (right, middle, and left) and two portal branches. Patients with impaired liver function have increased intrahepatic vascular resistance and splanchnic vasodilation, which may lead to an increase in the portal pressure gradient (PPG) and cause portal hypertension (PHT). In order to measure the increased pressure gradient of portal vein, the hepatic venous pressure gradient (HVPG) can be measured to reflect it in clinical practice. The accuracy of PPG measurements is directly related to patient prognosis. AIM: To analyze the correlation between HVPG of three hepatic veins and PPG in patients with PHT. METHODS: From January 2017 to December 2019, 102 patients with PHT who met the inclusion criteria were evaluated during the transjugular intrahepatic portosystemic shunt procedure and analyzed. RESULTS: The mean HVPG of the middle hepatic vein was 17.47 ± 10.25 mmHg, and the mean HVPG of the right and left hepatic veins was 16.34 ± 7.60 and 16.52 ± 8.15 mmHg, respectively. The average PPG was 26.03 ± 9.24 mmHg. The correlation coefficient and coefficient of determination of the right hepatic vein, middle hepatic vein, and left hepatic vein were 0.15 and 0.02 (P = 0.164); 0.25 and 0.05 (P = 0.013); and 0.14 and 0.02 (P = 0.013), respectively. The mean wedged hepatic vein/venous pressure (WHVP) of the middle and left hepatic veins was similar at 29.71 ± 12.48 and 29.1 ± 10.91 mmHg, respectively, and the mean WHVP of the right hepatic vein was slightly lower at 28.01 ± 8.95 mmHg. The mean portal vein pressure was 34.11 ± 8.56 mmHg. The correlation coefficient and coefficient of determination of the right hepatic vein, middle hepatic vein, and left hepatic vein were 0.26 and 0.07 (P = 0.009); 0.38 and 0.15 (P < 0.001); and 0.26 and 0.07 (P = 0.008), respectively. The average free hepatic venous pressure (FHVP) of the right hepatic vein was lowest at 11.67 ± 5.34 mmHg, and the average FHVP of the middle and left hepatic veins was slightly higher at 12.19 ± 4.88 and 11.67 ± 5.34 mmHg, respectively. The average inferior vena cava pressure was 8.27 ± 4.04 mmHg. The correlation coefficient and coefficient of determination of the right hepatic vein, middle hepatic vein, and left hepatic vein were 0.30 and 0.09 (P = 0.002); 0.18 and 0.03 (P = 0.078); and 0.16 and 0.03 (P = 0.111), respectively. CONCLUSION: Measurement of the middle hepatic vein HVPG could better represent PPG. Considering the high success rate of clinical measurement of the right hepatic vein, it can be the second choice.

...