Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Proc Biol Sci ; 288(1942): 20202187, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33434464

RESUMEN

Hagfish eyes are markedly basic compared to the eyes of other vertebrates, lacking a pigmented epithelium, a lens and a retinal architecture built of three cell layers: the photoreceptors, interneurons and ganglion cells. Concomitant with hagfish belonging to the earliest-branching vertebrate group (the jawless Agnathans), this lack of derived characters has prompted competing interpretations that hagfish eyes represent either a transitional form in the early evolution of vertebrate vision, or a regression from a previously elaborate organ. Here, we show the hagfish retina is not extensively degenerating during its ontogeny, but instead grows throughout life via a recognizable PAX6+ ciliary marginal zone. The retina has a distinct layer of photoreceptor cells that appear to homogeneously express a single opsin of the RH1 rod opsin class. The epithelium that encompasses these photoreceptors is striking because it lacks the melanin pigment that is universally associated with animal vision; notwithstanding, we suggest this epithelium is a homologue of gnathosome retinal pigment epithelium (RPE) based on its robust expression of RPE65 and its engulfment of photoreceptor outer segments. We infer that the hagfish retina is not entirely rudimentary in its wiring, despite lacking a morphologically distinct layer of interneurons: multiple populations of cells exist in the hagfish inner retina and subsets of these express markers of vertebrate retinal interneurons. Overall, these data clarify Agnathan retinal homologies, reveal characters that now appear to be ubiquitous across the eyes of vertebrates, and refine interpretations of early vertebrate visual system evolution.


Asunto(s)
Anguila Babosa , Animales , Opsinas , Células Fotorreceptoras de Vertebrados , Retina , Opsinas de Bastones , Vertebrados
2.
iScience ; 23(12): 101805, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33299975

RESUMEN

The transcription factor NRL (neural retina leucine zipper) has been canonized as the master regulator of photoreceptor cell fate in the retina. NRL is necessary and sufficient to specify rod cell fate and to preclude cone cell fate in mice. By engineering zebrafish, we tested if NRL function has conserved roles beyond mammals or beyond nocturnal species, i.e., in a vertebrate possessing a greater and more typical diversity of cone sub-types. Transgenic expression of Nrl from zebrafish or mouse was sufficient to induce rod photoreceptor cells. Zebrafish nrl -/- mutants lacked rods (and had excess UV-sensitive cones) as young larvae; thus, the conservation of Nrl function between mice and zebrafish appears sound. Strikingly, however, rods were abundant in adult nrl -/- null mutant zebrafish. Rods developed in adults despite Nrl protein being undetectable. Therefore, a yet-to-be-revealed non-canonical pathway independent of Nrl is able to specify the fate of some rod photoreceptors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...