Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(24): 10142-10149, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38818546

RESUMEN

The development of excellent bifunctional electrocatalysts is an effective way to promote the industrial application of electrolytic water. In this work, a free-standing W-doped cobalt selenide (W-CoSe300/NF) electrocatalyst with a snowflake-like structure supported on nickel foam was prepared by a hydrothermal-selenization strategy. Benefiting from the high specific surface area of the 3D snowflake-like structure and the regulation of tungsten doping on the electronic structure of the metal active center, W-CoSe300/NF shows remarkable electrocatalytic water decomposition performance. In 1.0 M KOH, the W-CoSe300/NF electrocatalyst achieved an efficient HER and OER at a current density of 50 mA cm-2 with overpotentials as low as 84 mV and 283 mV, respectively. More importantly, W-CoSe300/NF acts as both the anode and cathode of the electrolytic tank, requiring only a potential of 1.54 V to obtain 10 mA cm-2 and can operate continuously for more than 120 hours at this current density. This study proposes a new way for the design of high efficiency and affordable bifunctional electrocatalysts.

2.
Int J Biol Macromol ; 271(Pt 1): 132693, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806086

RESUMEN

In this study, a novel double-layer slow-release fertilizer (SRF) was developed utilizing stearic acid (SA) as a hydrophobic inner coating and a blend of starch phosphate carbamate (abbreviated as SPC) and polyvinyl alcohol (PVA) as a hydrophilic outer coating (designated as SPCP). The mass ratios of SPC and PVA in the SPCP matrices were systematically optimized by comprehensively checking the water absorbency, water contact angle (WCA), water retention property (WR), and mechanical properties such as percentage elongation at break and tensile strength with FTIR, XRD, EDS, and XPS techniques, etc. Moreover, the optimal SPCP/5:5 demonstrated superior water absorbency with an 80.2 % increase for the total mass compared to natural starch/PVA(NSP), along with desirable water retention capacity in the soil, exhibiting a weight loss of only 48 % over 13 d. Relative to pure urea and SA/NSPU/5:5, SA/SPCPU/5:5 released 50.3 % of its nutrient within 15 h, leading to nearly complete release over 25 h in the aqueous phase, while only 46.6 % of urea was released within 20 d in soil, extending to approximately 30 d. The slow release performance of urea reveals that the diffusion rate of urea release shows a significant decrease with an increase in coating layers. Consequently, this work demonstrated a prospective technology for the exploration of environmentally friendly SRF by integrating biodegradable starch derivatives with other polymers.


Asunto(s)
Preparaciones de Acción Retardada , Fertilizantes , Alcohol Polivinílico , Almidón , Urea , Agua , Almidón/química , Alcohol Polivinílico/química , Urea/química , Agua/química , Biodegradación Ambiental , Interacciones Hidrofóbicas e Hidrofílicas , Suelo/química
3.
Nat Commun ; 15(1): 4414, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38782889

RESUMEN

The ultrahigh flexibility and elasticity achieved in freestanding single-crystalline ferroelectric oxide membranes have attracted much attention recently. However, for antiferroelectric oxides, the flexibility limit and fundamental mechanism in their freestanding membranes are still not explored clearly. Here, we successfully fabricate freestanding single-crystalline PbZrO3 membranes by a water-soluble sacrificial layer technique. They exhibit good antiferroelectricity and have a commensurate/incommensurate modulated microstructure. Moreover, they also have good shape recoverability when bending with a small radius of curvature (about 2.4 µm for the thickness of 120 nm), corresponding to a bending strain of 2.5%. They could tolerate a maximum bending strain as large as 3.5%, far beyond their bulk counterpart. Our atomistic simulations reveal that this remarkable flexibility originates from the antiferroelectric-ferroelectric phase transition with the aid of polarization rotation. This study not only suggests the mechanism of antiferroelectric oxides to achieve high flexibility but also paves the way for potential applications in flexible electronics.

4.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38603616

RESUMEN

MOTIVATION: Clustering analysis for single-cell RNA sequencing (scRNA-seq) data is an important step in revealing cellular heterogeneity. Many clustering methods have been proposed to discover heterogenous cell types from scRNA-seq data. However, adaptive clustering with accurate cluster number reflecting intrinsic biology nature from large-scale scRNA-seq data remains quite challenging. RESULTS: Here, we propose a single-cell Deep Adaptive Clustering (scDAC) model by coupling the Autoencoder (AE) and the Dirichlet Process Mixture Model (DPMM). By jointly optimizing the model parameters of AE and DPMM, scDAC achieves adaptive clustering with accurate cluster numbers on scRNA-seq data. We verify the performance of scDAC on five subsampled datasets with different numbers of cell types and compare it with 15 widely used clustering methods across nine scRNA-seq datasets. Our results demonstrate that scDAC can adaptively find accurate numbers of cell types or subtypes and outperforms other methods. Moreover, the performance of scDAC is robust to hyperparameter changes. AVAILABILITY AND IMPLEMENTATION: The scDAC is implemented in Python. The source code is available at https://github.com/labomics/scDAC.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , Transcriptoma/genética , Humanos , Algoritmos , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos , Programas Informáticos
5.
J Colloid Interface Sci ; 667: 237-248, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636225

RESUMEN

Traditional phase engineering enhances conductivity or activity by fully converting electrocatalytic materials into either a crystalline or an amorphous state, but this approach often faces limitations. Thus, a practical solution entails balancing the dynamic attributes of both phases to maximize an electrocatalyst's functionality is urgently needed. Herein, in this work, Co/Co2C crystals have been assembled on the amorphous N, S co-doped porous carbon (NSPC) through hydrothermal and calcination processes. The stable biphase structure and amorphous/crystalline (A/C) interface enhance conductivity and intrinsic activity. Moreover, the adsorption ability of water molecules and intermediates is improved significantly attributed to the rich oxygen-containing groups, unsaturated bonds, and defect sites of NSPC, which accelerates proton-coupled electron transfer (PCET) and overall water splitting. Consequently, A/C-Co/Co2C/NSPC (Co/Co2C/NSPC with amorphous/crystalline interface) exhibits outstanding behavior for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), requiring the overpotential of 240.0 mV and 70.0 mV to achieve 10 mA cm-2. Moreover, an electrolyzer assembled by A/C-Co/Co2C/NSPC-3 (anode) and A/C-Co/Co2C/NSPC-2 (cathode) demonstrates a low drive voltage of 1.54 V during overall water splitting process. Overall, this work has pioneered the coexistence of crystalline/amorphous phases in electrocatalysts and provided new insights into phase engineering.

6.
ACS Appl Mater Interfaces ; 16(8): 10953-10959, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38350012

RESUMEN

Flexible quantum spin electronic devices based on ferromagnetic insulators have attracted wide attention due to their outstanding advantages of low-power dissipation and noncontact sensing. However, ferromagnetic insulators, such as monocrystalline yttrium iron garnet (Y3Fe5O12, YIG), hve weak stress effects with a small magnetostrictive coefficient (λ110, 10 ppm), making it difficult to achieve a large magnetic tunable amplitude. In this paper, large-scale (with a diameter of 40 mm), flexible Pt/YIG heterojunctions were obtained by double-cavity magnetron sputtering technology, indicating typical soft magnetism and good bending fatigue characteristics. Here, the 3 nm thickness of the Pt layer triggers an obvious magnetic proximity effect, in which the in-plane ferromagnetic resonance field is decreased by 70 Oe compared to flexible Cu/YIG heterojunctions. Meanwhile, it shows a wide tunable amplitude of 110 Oe under the flexible bending stresses, which is induced by the sensitive interface effect of Pt (3 nm)/YIG heterojunctions. The saturation magnetization of Pt/YIG heterojunctions is negatively correlated with Pt thickness rather than the relative stability of Cu/YIG heterojunctions, depending on the magnetic proximity effect. It brings greater application possibilities for flexible stress-sensitive magnetic oxides in spin logic electronic devices.

7.
Nat Biotechnol ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263515

RESUMEN

Integrating single-cell datasets produced by multiple omics technologies is essential for defining cellular heterogeneity. Mosaic integration, in which different datasets share only some of the measured modalities, poses major challenges, particularly regarding modality alignment and batch effect removal. Here, we present a deep probabilistic framework for the mosaic integration and knowledge transfer (MIDAS) of single-cell multimodal data. MIDAS simultaneously achieves dimensionality reduction, imputation and batch correction of mosaic data by using self-supervised modality alignment and information-theoretic latent disentanglement. We demonstrate its superiority to 19 other methods and reliability by evaluating its performance in trimodal and mosaic integration tasks. We also constructed a single-cell trimodal atlas of human peripheral blood mononuclear cells and tailored transfer learning and reciprocal reference mapping schemes to enable flexible and accurate knowledge transfer from the atlas to new data. Applications in mosaic integration, pseudotime analysis and cross-tissue knowledge transfer on bone marrow mosaic datasets demonstrate the versatility and superiority of MIDAS. MIDAS is available at https://github.com/labomics/midas .

8.
Nanomicro Lett ; 16(1): 19, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975933

RESUMEN

HIGHLIGHTS: The (001)-oriented ferromagnetic La0.67Sr0.33MnO3 films are stuck onto the (011)-oriented ferroelectric single-crystal 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 substrate with 0° and 45° twist angle. By applying a 7.2 kV cm-1 electric field, the coexistence of uniaxial and fourfold in-plane magnetic anisotropy is observed in 45° Sample, while a typical uniaxial anisotropy is found in 0° Sample. Manipulating strain mode and degree that can be applied to epitaxial complex oxide thin films have been a cornerstone of strain engineering. In recent years, lift-off and transfer technology of the epitaxial oxide thin films have been developed that enabled the integration of heterostructures without the limitation of material types and crystal orientations. Moreover, twisted integration would provide a more interesting strategy in artificial magnetoelectric heterostructures. A specific twist angle between the ferroelectric and ferromagnetic oxide layers corresponds to the distinct strain regulation modes in the magnetoelectric coupling process, which could provide some insight in to the physical phenomena. In this work, the La0.67Sr0.33MnO3 (001)/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (011) (LSMO/PMN-PT) heterostructures with 45º and 0º twist angles were assembled via water-etching and transfer process. The transferred LSMO films exhibit a fourfold magnetic anisotropy with easy axis along LSMO < 110 >. A coexistence of uniaxial and fourfold magnetic anisotropy with LSMO [110] easy axis is observed for the 45° Sample by applying a 7.2 kV cm-1 electrical field, significantly different from a uniaxial anisotropy with LSMO [100] easy axis for the 0° Sample. The fitting of the ferromagnetic resonance field reveals that the strain coupling generated by the 45° twist angle causes different lattice distortion of LSMO, thereby enhancing both the fourfold and uniaxial anisotropy. This work confirms the twisting degrees of freedom for magnetoelectric coupling and opens opportunities for fabricating artificial magnetoelectric heterostructures.

9.
Nanotechnology ; 34(46)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37567166

RESUMEN

In this work, a novel nitrogen-phosphorus co-doped carbon quantum dots (N, P-CQDs) hydrogel was developed utilizing the as-synthesized N, P-CQDs and acrylamide (AM) with the existence of ammonium persulfate and N, N'-methylene bisacrylamide (N-MBA). In consistent with pure N, P-CQDs, the N, P-CQDs hydrogel also shows a dramatic fluorescence property with maximum emission wavelength of 440 nm, which can also be quenched after adsorbing iron ions (Fe3+). When the concentration of Fe3+is 0-6 mmol l-1, a better linear relationship between Fe3+concentration and the fluorescence intensities can be easily obtained. Additionally, the N, P-CQDs hydrogel exhibits better recyclability. This confirms that the N, P-CQDs hydrogel can be used for adsorbing and detecting Fe3+in aqueous with on-off-on mode. The fluorescence quenching mainly involves three procedures including the adsorption of Fe3+by hydrogel, integration of Fe3+with N, P-CQDs and the transportation of conjugate electrons in N, P-CQDs to the vacant orbits of Fe3+and the adsorption process follows a pseudo-second-order kinetic model confirmed in the Freundlich isotherm model. In conclusion, this work provides a novel route for synchronously removing and detecting the metal ions in aqueous by integrating N, P-CQDs with hydrogel with better recyclability.

10.
Adv Mater ; 35(40): e2303810, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37401913

RESUMEN

Spin waves are considered to be an alternative carrier with great promise for information sensing. The feasible excitation and low-power manipulation of spin waves still remain a challenge. In this regard, natural light enablings spin-wave tunability in Co60 Al40 -alloyed film is investigated. A reversible shift of the critical angle (from 81° in the dark to 83° under illumination) of the body spin-wave is achieved successfully Meanwhile, an eye-catching shift (817 Oe) of the ferromagnetic resonance (FMR) field is obtained optically, leading to changes in magnetic anisotropy. Based on the modified Puszkarski's surface inhomogeneity model, the control of spin-wave resonance (SWR) by sunlight can be understood by an effective photoelectron-doping-induced change of the surface magnetic anisotropy. Furthermore, the body spin wave is modulated stably with natural light illumination, confirming a non-volatile, reversible switching behavior. This work has both practical and theoretical importance for developing future sunlight-tunable magnonics/spintronics devices.

11.
Adv Sci (Weinh) ; 10(22): e2301057, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37218529

RESUMEN

The electron-phonon interaction is known as one of the major mechanisms determining electrical and thermal properties. In particular, it alters the carrier transport behaviors and sets fundamental limits to carrier mobility. Establishing how electrons interact with phonons and the resulting impact on the carrier transport property is significant for the development of high-efficiency electronic devices. Here, carrier transport behavior mediated by the electron-phonon coupling in BiFeO3 epitaxial thin films is directly observed. Acoustic phonons are generated by the inverse piezoelectric effect and coupled with photocarriers. Via the electron-phonon coupling, doughnut shape carrier distribution has been observed due to the coupling between hot carriers and phonons. The hot carrier quasi-ballistic transport length can reach 340 nm within 1 ps. The results suggest an effective approach to investigating the effects of electron-phonon interactions with temporal and spatial resolutions, which is of great importance for designing and improving electronic devices.

12.
Adv Mater ; 35(22): e2300962, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36872865

RESUMEN

Dielectric capacitors are promising for high power energy storage, but their breakdown strength (Eb ) and energy density (Ue ) usually degrade rapidly at high temperatures. Adding boron nitride (BN) nanosheets can improve the Eb and high-temperature endurance but with a limited Ue due to its low dielectric constant. Here, freestanding single-crystalline BaZr0.2 Ti0.8 O3 (BZT) membranes with high dielectric constant are fabricated, and introduced into BN doped polyetherimide (PEI) to obtain laminated PEI-BN/BZT/PEI-BN composites. At room temperature, the composite shows a maximum Ue of 17.94 J cm-3  at 730 MV m-1 , which is more than two times the pure PEI. Particularly, the composites exhibit excellent dielectric-temperature stability between 25 and 150 °C. An outstanding Ue  = 7.90 J cm-3  is obtained at a relatively large electric field of 650 MV m-1  under 150 °C, which is superior to the most high-temperature dielectric capacitors reported so far. Phase-field simulation reveals that the depolarization electric field generated at the BZT/PEI-BN interfaces can effectively reduce carrier mobility, leading to the remarkable enhancement of the Eb and Ue over a wide temperature range. This work provides a promising and scalable route to develop sandwich-structured composites with prominent energy storage performances for high-temperature capacitive applications.

13.
IEEE Trans Cybern ; 53(10): 6236-6247, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35604988

RESUMEN

Deep hashing reaps the benefits of deep learning and hashing technology, and has become the mainstream of large-scale image retrieval. It generally encodes image into hash code with feature similarity preserving, that is, geometric-structure preservation, and achieves promising retrieval results. In this article, we find that existing geometric-structure preservation manner inadequately ensures feature discrimination, while improving feature discrimination of hash code essentially determines hash learning retrieval performance. This fact principally spurs us to propose a discriminative geometric-structure-based deep hashing method (DGDH), which investigates three novel loss terms based on class centers to induce the so-called discriminative geometrical structure. In detail, the margin-aware center loss assembles samples in the same class to the corresponding class centers for intraclass compactness, then a linear classifier based on class center serves to boost interclass separability, and the radius loss further puts different class centers on a hypersphere to tentatively reduce quantization errors. An efficient alternate optimization algorithm with guaranteed desirable convergence is proposed to optimize DGDH. We theoretically analyze the robustness and generalization of the proposed method. The experiments on five popular benchmark datasets demonstrate superior image retrieval performance of the proposed DGDH over several state of the arts.

14.
Adv Mater ; 35(7): e2208875, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36458997

RESUMEN

2D Dion-Jacobson (DJ) perovskite single crystals (PSCs) usually demonstrate better X-ray detection performance than Ruddlesden-Popper (RP) PSCs. However, the mechanism of the improved performance is still elusive. Here, by the aid of strong interactions between dimethylbiguanide (DGA) and PbI2 , a novel DJ-perovskitoid (DGA)PbI4 is designed. From the comparison of (DGA)PbI4 to other 2D PSCs, it is discovered that the tiniest lattice distortion and increased hydrogen bonds in the atom-scaled analysis strengthen lattice rigidity and weaken electron-phonon coupling to suppress disordered scattering of carriers, resulting in significantly improved carrier transport and stability. Therefore, high carrier mobility (78.1 cm2 V-1 s-1 ) and a pronounced sensitivity of 4869.0 µC Gyair -1 cm-2 are achieved using (DGA)PbI4 , which are the best in 2D Pb-based PSC devices to date. Finally, the (DGA)PbI4 devices exhibit good spatial resolution in X-ray imaging and excellent long-term stability to work as a promising candidate for medical diagnostics and nondestructive determination.

15.
ACS Nano ; 16(12): 21555-21564, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36479886

RESUMEN

Implantable flexible mechanical sensors have exhibited great potential in health monitoring and disease diagnosis due to continuous and real-time monitoring capability. However, the wires and power supply required in current devices cause inconvenience and potential risks. Magnetic-based devices have demonstrated advantages in wireless and passive sensing, but the mismatched mechanical properties, poor biocompatibility, and insufficient sensitivity have limited their applications in biomechanical monitoring. Here, a wireless and passive flexible magnetic-based strain sensor based on a gelatin methacrylate/Fe3O4 magnetic hydrogel has been fabricated. The sensor exhibits ultrasoft mechanical properties, strong magnetic properties, and long-term stability in saline solution and can monitor strains down to 50 µm. A model of the sensing process is established to identify the optimal detection location and the relation between the relative magnetic permeability and the sensitivity of the sensors. Moreover, an in vitro tissue model is developed to investigate the potential of the sensor in detecting subtle biomechanical signals and avoiding interference with bioactivities. Furthermore, a real-time and high-throughput biomonitoring platform is built and implements passive wireless monitoring of the drug response and cultural status of the cardiomyocytes. This work demonstrates the potential of applying magnetic sensing for biomechanical monitoring and provides ideas for the design of wireless and passive implantable devices.


Asunto(s)
Hidrogeles , Tecnología Inalámbrica , Prótesis e Implantes , Fenómenos Físicos , Fenómenos Magnéticos
16.
Artículo en Inglés | MEDLINE | ID: mdl-36446622

RESUMEN

BACKGROUND: There is no criterion on the length of the uniportal video-assisted thoracoscopic surgery (UVATS) incision when performing lobectomy. We aimed to develop a nomogram to assist surgeons in designing incision length for different individuals. METHODS: A cohort consisting of 290 patients were enrolled for nomogram development. Univariate and multivariate logistic regression analyses were performed to identify candidate variables among perioperative characteristics. C-index and calibration curves were utilized for evaluating the performance of the nomogram. Short-term outcomes of nomogram-predicted high-risk patients were compared between long incision group and conventional incision group. RESULTS: Of 290 patients, 150 cases (51.7%) were performed incision extension during the surgery. Age, tumor size, and tumor location were identified as candidate variables related with intraoperative incision extension and were incorporated into the nomogram. C-index of the nomogram was 0.75 (95% confidence interval: 0.6961-0.8064), indicating the good predictive performance. Calibration curves presented good consistency between the nomogram prediction and actual observation. Of high-risk patients identified by the nomogram, the long incision group (n = 47) presented shorter duration of operation (p = 0.03), lower incidence of total complications (p = 0.01), and lower incidence of prolonged air leak (p = 0.03) compared with the conventional incision group (n = 55). CONCLUSION: We developed a novel nomogram for predicting the risk of intraoperative incision extension when performing uniportal video-assisted thoracoscopic lobectomy. This model has the potential to assist clinicians in designing the incision length preoperatively to ensure both safety and minimal invasiveness.

17.
ACS Nano ; 16(7): 11291-11299, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35848713

RESUMEN

The rapid development of spintronics requires the devices to be flexible, to be used in wearable electronics, and controllable, to be used with magnetoelectric (ME) structures. However, the clamping effect inevitably leads to a decreased ME effect on the rigid substrate, and it remains challenging to directly prepare high-quality ferroelectric (FE) membranes on the widely used flexible substrate such as MICA or polyimide (PI). Here, periodic wrinkle-patterned flexible (Co/Pt)5/BaTiO3 (BTO) perpendicular magnetic anisotropy (PMA) heterostructures were prepared using the water-soluble method. The high-quality single-crystal BTO membrane ensures that intricate wrinkles do not fracture and a high ME coefficient is achievable. The transferred sample that is released from the clamping effect shows an enhanced ME effect in both in-plane and out-of-plane directions, with the ME coefficient reaching up to 68 Oe °C-1. The ferromagnetic resonance (FMR) field of the flexible sample can be tuned by tensile strain up to 272 Oe. The finely controlled wrinkle shows periodic strain variations at peak and valley regions that switch the PMA magnetic domain motion as an effective control method. The proposed ultraflexible wrinkle sample shows great potential for combining multiple magnetization tuning approaches, allowing it to potentially serve as a tunable high-density 3D storage prototype.

18.
Front Microbiol ; 13: 828254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602026

RESUMEN

Intestinal bacteria strains play crucial roles in maintaining host health. Researchers have increasingly recognized the importance of strain-level analysis in metagenomic studies. Many analysis tools and several cutting-edge sequencing techniques like single cell sequencing have been proposed to decipher strains in metagenomes. However, strain-level complexity is far from being well characterized up to date. As the indicator of strain-level complexity, metagenomic single-nucleotide polymorphisms (SNPs) have been utilized to disentangle conspecific strains. Lots of SNP-based tools have been developed to identify strains in metagenomes. However, the sufficient sequencing depth for SNP and strain-level analysis remains unclear. We conducted ultra-deep sequencing of the human gut microbiome and constructed an unbiased framework to perform reliable SNP analysis. SNP profiles of the human gut metagenome by ultra-deep sequencing were obtained. SNPs identified from conventional and ultra-deep sequencing data were thoroughly compared and the relationship between SNP identification and sequencing depth were investigated. The results show that the commonly used shallow-depth sequencing is incapable to support a systematic metagenomic SNP discovery. In contrast, ultra-deep sequencing could detect more functionally important SNPs, which leads to reliable downstream analyses and novel discoveries. We also constructed a machine learning model to provide guidance for researchers to determine the optimal sequencing depth for their projects (SNPsnp, https://github.com/labomics/SNPsnp). To conclude, the SNP profiles based on ultra-deep sequencing data extend current knowledge on metagenomics and highlights the importance of evaluating sequencing depth before starting SNP analysis. This study provides new ideas and references for future strain-level investigations.

19.
ACS Appl Mater Interfaces ; 14(15): 17849-17857, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35389212

RESUMEN

Inorganic/organic dielectric composites with outstanding energy storage properties at a low electric field possess the advantages of low operating voltage and small probability of failure. Composites filled with two-dimensional inorganic nanosheets have attracted much attention owing to their fewer interfacial defects caused by the agglomeration of fillers. Continuous oxide films with a preferred orientation can play a significant role in enhancing energy storage. The challenge is to prepare large-sized, freestanding, single-crystal, ferroelectric oxide films and to combine them with polymers. In this work, a well-developed water-dissolvent process was used to transfer millimeter-sized (100)-oriented BaTiO3 (BTO) films. Poly(vinylidene fluoride) (PVDF)-based heterojunctions sandwiched with the single-crystal films were synthesized via the transferring process and an optimized hot-pressing technique. By virtue of high ion displacement polarization and inhibited conductive path formation of single-crystal BTO films, the energy storage density and efficiency of BTO/PVDF heterojunctions reach 1.56 J cm-3 and 71.2% at a low electric field of 120 MV m-1, which are much higher than those of pure PVDF and BTO nanoparticles/PVDF composite films, respectively. A finite-element simulation was employed to further confirm the experimental results. This work provides an effective approach to enhance energy storage properties in various polymer-based composites and opens the door to advanced dielectric capacitors.

20.
ACS Appl Mater Interfaces ; 14(11): 13925-13931, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35271247

RESUMEN

Magnetoelectric coupling properties are limited to the substrate clamping effect in traditional ferroelectric/ferromagnetic heterostructures. Here, Fe3O4/BaTiO3 nanopillar composites are successfully constructed. The well-ordered BaTiO3 nanopillar arrays are prepared through template-assisted pulsed laser deposition. The Fe3O4 layer is coated on BaTiO3 nanopillar arrays by atomic layer deposition. The nanopillar arrays and heterostructure are confirmed by scanning electron microscopy and transmission electron microscopy. A large thermally driven magnetoelectric coupling coefficient of 395 Oe °C-1 near the phase transition of BaTiO3 (orthorhombic to rhombohedral) is obtained, indicating a strong strain-induced magnetoelectric coupling effect. The enhanced magnetoelectric coupling effect originated from the reduced substrate clamping effect and increased the interface area in nanopillar structures. This work opens a door toward cutting-edge potential applications in spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA