Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
J Gene Med ; 26(7): e3718, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979822

RESUMEN

BACKGROUND: Icariin (ICA) inhibits inflammatory response in various diseases, but the mechanism underlying ICA treating airway inflammation in asthma needs further understood. We aimed to predict and validate the potential targets of ICA against asthma-associated airway inflammation using network pharmacology and experiments. METHODS: The ovalbumin-induced asthma-associated airway inflammation mice model was established. The effects of ICA were evaluated by behavioral, airway hyperresponsiveness, lung pathological changes, inflammatory cell and cytokines counts. Next, the corresponding targets of ICA were mined via the SEA, CTD, HERB, PharmMapper, Symmap database and the literature. Pubmed-Gene and GeneCards databases were used to screen asthma and airway inflammation-related targets. The overlapping targets were used to build an interaction network, analyze gene ontology and enrich pathways. Subsequently, flow cytometry, quantitative real-time PCR and western blotting were employed for validation. RESULTS: ICA alleviated the airway inflammation of asthma; 402 targets of ICA, 5136 targets of asthma and 4531 targets of airway inflammation were screened; 216 overlapping targets were matched and predicted ICA possesses the potential to modulate asthmatic airway inflammation by macrophage activation/polarization. Additionally, ICA decreased M1 but elevated M2. Potential targets that were disrupted by asthma inflammation were restored by ICA treatment. CONCLUSIONS: ICA alleviates airway inflammation in asthma by inhibiting the M1 polarization of alveolar macrophages, which is related to metabolic reprogramming. Jun, Jak2, Syk, Tnf, Aldh2, Aldh9a1, Nos1, Nos2 and Nos3 represent potential targets of therapeutic intervention. The present study enhances understanding of the anti-airway inflammation effects of ICA, especially in asthma.


Asunto(s)
Asma , Modelos Animales de Enfermedad , Flavonoides , Activación de Macrófagos , Macrófagos Alveolares , Farmacología en Red , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Ratones , Flavonoides/farmacología , Flavonoides/uso terapéutico , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/inmunología , Activación de Macrófagos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Citocinas/metabolismo , Ovalbúmina , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Femenino
2.
J Gene Med ; 26(7): e3710, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967229

RESUMEN

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) are susceptible to coronavirus disease-2019 (COVID-19), but current treatments are limited. Icariside II (IS), a flavonoid compound derived from the plant epimedin, showed anti-cancer,anti-inflammation and immunoregulation effects. The present study aimed to evaluate the possible effect and underlying mechanisms of IS on NSCLC patients with COVID-19 (NSCLC/COVID-19). METHODS: NSCLC/COVID-19 targets were defined as the common targets of NSCLC (collected from The Cancer Genome Atlas database) and COVID-19 targets (collected from disease database of Genecards, OMIM, and NCBI). The correlations of NSCLC/COVID-19 targets and survival rates in patients with NSCLC were analyzed using the survival R package. Prognostic analyses were performed using univariate and multivariate Cox proportional hazards regression models. Furthermore, the targets in IS treatment of NSCLC/COVID-19 were defined as the overlapping targets of IS (predicted from drug database of TMSCP, HERBs, SwissTarget Prediction) and NSCLC/COVID-19 targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of these treatment targets were performed aiming to understand the biological process, cellular component, molecular function and signaling pathway. The hub targets were analyzed by a protein-protein interaction network and the binding capacity with IS was characterized by molecular docking. RESULTS: The hub targets for IS in the treatment of NSCLC/COVID-19 includes F2, SELE, MMP1, MMP2, AGTR1 and AGTR2, and the molecular docking results showed that the above target proteins had a good binding degree to IS. Network pharmacology showed that IS might affect the leucocytes migration, inflammation response and active oxygen species metabolic process, as well as regulate the interleukin-17, tumor necrosus factor and hypoxia-inducible factor-1 signaling pathway in NSCLC/COVID-19. CONCLUSIONS: IS may enhance the therapeutic efficacy of current clinical anti-inflammatory and anti-cancer therapy to benefit patients with NSCLC combined with COVID-19.


Asunto(s)
COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Flavonoides , Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Farmacología en Red , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , COVID-19/virología , COVID-19/metabolismo , Flavonoides/uso terapéutico , Flavonoides/química , Flavonoides/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Tratamiento Farmacológico de COVID-19 , Mapas de Interacción de Proteínas/efectos de los fármacos , Pronóstico
3.
Heliyon ; 10(12): e32351, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988534

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a respiratory inflammatory disease. Psoralen (PSO) is the main pharmacological component identified from Bu-Shen-Fang-Chuan formula which has been traditionally used in treatment of COPD, yet its efficacy in COPD inflammation were unreported. In this study, we aimed to elucidate the anti-inflammatory potential of PSO in COPD and unravel the underlying mechanisms, focusing on T lymphocyte recruitment and the modulation of chemokines, namely monokine induced by interferon-gamma (CXCL9), interferon inducible protein 10 (CXCL10), and interferon inducible T-Cell alpha chemoattractant (CXCL11). In vitro, RAW264.7 was stimulated by interferon (IFN)-γ + cigarette smoke extract (CSE) and were treated with PSO (2.5, 5, 10 µM), then the levels of chemokines and the activation of Janus kinase (JAK)/Signal transducer and activator of transcription 1 (STAT1) pathway were analyzed by real time PCR and western blot. In vivo, a murine model was established by intraperitoneal injection of CSE on day 1, 8, 15, and 22, then treated with PSO (10 mg/kg). Our experiments in vitro illustrated that PSO reduced the levels of CXCL9, CXCL10, and CXCL11, and decreased the protein phosphorylation levels of JAK2 and STAT1. Additionally, PSO effectively improved inflammatory infiltration and decreased the proportion of CD8+ T cells in CSE-exposed mice. Furthermore, PSO reduced the levels of CXCL9, CXCL10, and CXCL11 in bronchoalveolar lavage fluid (BALF) and lung tissue, and decreased the protein phosphorylation levels of JAK2 and STAT1. In conclusion, our results revealed the therapeutic potential of PSO for COPD inflammation, possibly mediated through the regulation of CD8+ T cell recruitment and chemokines via the JAK2/STAT1 signaling pathway.

4.
Cancer Gene Ther ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839892

RESUMEN

Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.

5.
Phytomedicine ; 130: 155687, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38759312

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a debilitating interstitial lung disorder characterized by its limited therapeutic interventions. Macrophages, particularly the alternatively activated macrophages (M2 subtype), have been acknowledged for their substantial involvement in the development of pulmonary fibrosis. Hence, targeting macrophages emerges as a plausible therapeutic avenue for IPF. Icariside II (ISE II) is a natural flavonoid glycoside molecule known for its excellent anti-tumor and anti-fibrotic activities. Nevertheless, the impact of ISE II on pulmonary fibrosis and the intricate mechanisms through which it operates have yet to be elucidated. OBJECTIVE: To scrutinize the impact of ISE II on the regulation of M2 macrophage polarization and its inhibitory effect on pulmonary fibrosis, as well as to delve deeper into the underlying mechanisms of its actions. METHODS: The effect of ISE II on proliferation and apoptosis in RAW264.7 cells was assessed through the use of EdU-488 labeling and the Annexin V/PI assay. Flow cytometry, western blot, and qPCR were employed to detect markers associated with the M2 polarization phenotype. The anti-fibrotic effects of ISE II in NIH-3T3 cells were investigated in a co-culture with M2 macrophages. Si-Ctnnb1 and pcDNA3.1(+)-Ctnnb1 plasmid were used to investigate the mechanism of targeted intervention. The murine model of pulmonary fibrosis was induced by intratracheal administration of bleomycin (BLM). Pulmonary function, histopathological manifestations, lung M2 macrophage infiltration, and markers associated with pulmonary fibrosis were evaluated. Furthermore, in vivo transcriptomics analysis was employed to elucidate differentially regulated genes in lung tissues. Immunofluorescence, western blot, and immunohistochemistry were conducted for corresponding validation. RESULTS: Our investigation demonstrated that ISE II effectively inhibited the proliferation of RAW264.7 cells and mitigated the pro-fibrotic characteristics of M2 macrophages, exemplified by the downregulation of CD206, Arg-1, and YM-1, Fizz1, through the inhibition of the PI3K/Akt/ß-catenin signaling pathway. This impact led to the amelioration of myofibroblast activation and the suppression of nuclear translocation of ß-catenin of NIH-3T3 cells in a co-culture. Consequently, it resulted in decreased collagen deposition, reduced infiltration of profibrotic macrophages, and a concurrent restoration of pulmonary function in mice IPF models. Furthermore, our RNA sequencing results showed that ISE II could suppress the expression of genes related to M2 polarization, primarily by inhibiting the PI3K/Akt and ß-catenin signaling pathway. In essence, our findings suggest that ISE II holds potential as an anti-fibrotic agent by orchestrating macrophage polarization. This may have significant implications in clinical practice. CONCLUSION: This study has provided evidence that ISE II exerts a significant anti-fibrotic effect by inhibiting macrophage M2 polarization through the suppression of the PI3K/Akt/ß-catenin signaling pathway. These findings underscore the potential of ISE II as a promising candidate for the development of anti-fibrotic pharmaceuticals in the future.


Asunto(s)
Flavonoides , Macrófagos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , beta Catenina , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Flavonoides/farmacología , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células 3T3 NIH , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Bleomicina , Ratones Endogámicos C57BL , Apoptosis/efectos de los fármacos , Masculino , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico
6.
J Ethnopharmacol ; 326: 117963, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38387680

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis is a serious complication of liver disease characterized by excessive collagen deposition, without effective therapeutic agents in the clinic. Fu-Gan-Wan (FGW) is an empirical formula used for the clinical treatment of hepatitis and cirrhosis. It has been shown to reverse experimental liver fibrosis. However, its corresponding mechanisms remain unclear. AIM OF THE REVIEW: This study aimed to elucidate the key pathways and target genes of FGW in attenuating liver fibrosis. MATERIALS AND METHODS: The therapeutic effects of different doses of FGW on liver fibrosis were investigated using a 2 mL/kg 15% CCl4-induced mouse model. Then, RNA-seq combined with network pharmacology was used to analyze the key biological processes and signaling pathways underlying the anti-liver fibrosis exertion of FGW. These findings were validated in a TGF-ß1-induced model of activation and proliferation of mouse hepatic stellate cell line JS-1. Finally, the key signaling pathways and molecular targets were validated using animal tissues, and the effect of FGW on tissue lipid peroxidation was additionally observed. RESULTS: We found that 19.5 g/kg FGW significantly down-regulated CCl4-induced elevation of hepatic ALT and AST, decreased collagen deposition, and inhibited the expression of pro-fibrotic factors α-SMA, COL1α1, CTGF, TIMP-1, as well as pro-inflammatory factor TGF-ß1. Additionally, FGW at doses of 62.5, 125, and 250 µg/mL dose-dependently blocked JS-1 proliferation, migration, and activation. Furthermore, RNA-seq identified the NF-κB signaling pathway as a key target molecular pathway for FGW against liver fibrosis, and network pharmacology combined with RNA-seq focused on 11 key genes. Significant changes were identified in CCL2 and HMOX1 by tissue RT-PCR, Western blot, and immunohistochemistry. We further demonstrated that FGW significantly attenuated CCl4-induced increases in p-p65, CCL2, CCR2, and HMOX1, while significantly elevating Nrf2. Finally, FGW significantly suppressed the accumulation of lipid peroxidation products MDA and 4-HNE and reconfigured the oxidation-reduction balance, including promoting the increase of antioxidants GPx, GSH, and SOD, and the decrease of peroxidation products ROS and GSSG. CONCLUSIONS: This study demonstrated that FGW exhibits potential in mitigating CCl4-induced hepatic fibrosis, lipid peroxidation, and iron metabolism disorders in mice. This effect may be mediated through the NF-κB/CCL2/CCR2 and Nrf2/HMOX1 pathways.


Asunto(s)
FN-kappa B , Factor de Crecimiento Transformador beta1 , Ratones , Animales , FN-kappa B/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Peroxidación de Lípido , Farmacología en Red , RNA-Seq , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Transducción de Señal , Hígado , Colágeno/metabolismo , Tetracloruro de Carbono/farmacología , Células Estrelladas Hepáticas
7.
J Asian Nat Prod Res ; 26(6): 699-713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38213072

RESUMEN

Astragaloside IV (AST) has been confirmed to have antiasthmatic effects. However, the underline mechanism is unclear. The study aimed to explore the treatment mechanism of AST based on autophagy of memory T cells. AST treatment significantly decreased the number of T effector cells in asthma mice blood and the nude mice that received AST-treated TCMs had relieved inflammation compared with the untreated group; meanwhile, we found that AST significantly decreased the autophagy level and inhibited OX40/OX40L signal pathway of lymphocytes. The results highlighted that AST regulated autophagy to inhibit differentiation of effector T-cell phenotype.


Asunto(s)
Asma , Autofagia , Inflamación , Saponinas , Linfocitos T , Triterpenos , Animales , Saponinas/farmacología , Asma/tratamiento farmacológico , Triterpenos/farmacología , Triterpenos/química , Ratones , Autofagia/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Inflamación/tratamiento farmacológico , Ratones Desnudos , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos BALB C
8.
J Ethnopharmacol ; 321: 117497, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048893

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic obstructive pulmonary disease (COPD) is a major global health concern characterized by pulmonary inflammation and airway remodeling. Traditional Chinese medicine, such as Modified Jiawei Bushen Yiqi Formula (MBYF), has been used as a complementary therapy for COPD in China. AIM OF THE STUDY: To investigate the therapeutic potential of MBYF in a rat model of COPD induced by cigarette smoke (CS) exposure and explore the underlying mechanism. MATERIALS AND METHODS: The COPD rat model was established through 24 weeks of CS exposure, with MBYF administration starting in the 9th week. Pulmonary function, histological analysis, inflammatory cell count and molecular assays were employed to assess the effects of MBYF on airway remodeling, pulmonary inflammation, neutrophils chemotaxis and the IL17 signaling pathway. RESULTS: MBYF treatment effectively delayed airway remodeling, as evidenced by improved pulmonary function parameters. Histological examination and bronchoalveolar lavage fluid analysis revealed that MBYF mitigated CS-induced pulmonary inflammation by reducing inflammatory cell infiltration. Pharmacological network analysis suggested that MBYF may act through the IL17 signaling pathway to regulate inflammatory responses. RNA-sequencing and molecular assays indicated that MBYF inhibited neutrophils chemotaxis through downregulating the CXCL1/CXCL5/CXCL8-CXCR2 axis, and suppressed IL17A, IL17F and its downstream cytokines, including IL6, TNFα, IL1ß, and COX2. Furthermore, MBYF inhibited the activation of NF-κB and MAPKs in the IL17 signaling pathway. CONCLUSION: MBYF exhibits potential as an adjunct or alternative treatment for COPD, effectively mitigating CS-induced pulmonary inflammation and airway remodeling through the inhibition of neutrophil chemotaxis and IL17 signaling pathway.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Neutrófilos , Quimiotaxis , Remodelación de las Vías Aéreas (Respiratorias) , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pulmón , Neumonía/metabolismo , Transducción de Señal , Líquido del Lavado Bronquioalveolar
9.
Int Immunol ; 36(1): 17-32, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37878760

RESUMEN

Chronic obstructive pulmonary disease (COPD) is closely related to innate and adaptive inflammatory immune responses. It is increasingly becoming evident that metabolic syndrome (MetS) affects a significant portion of COPD patients. Through this investigation, we identify shared immune-related candidate biological markers. The Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to reveal the co-expression modules linked to COPD and MetS. The commonly expressed genes in the COPD and MetS were utilized to conduct an enrichment analysis. We adopted machine-learning to screen and validate hub genes. We also assessed the relationship between hub genes and immune cell infiltration in COPD and MetS, respectively. Moreover, associations across hub genes and metabolic pathways were also explored. Finally, we chose a single-cell RNA sequencing (scRNA-seq) dataset to investigate the hub genes and shared mechanisms at the level of the cells. We also applied cell trajectory analysis and cell-cell communication analysis to focus on the vital immune cell we were interested in. As a result, we selected and validated 13 shared hub genes for COPD and MetS. The enrichment analysis and immune infiltration analysis illustrated strong associations between hub genes and immunology. Additionally, we applied metabolic pathway enrichment analysis, indicating the significant role of reactive oxygen species (ROS) in COPD with MetS. Through scRNA-seq analysis, we found that ROS might accumulate the most in the alveolar macrophages. In conclusion, the 13 hub genes related to the immune response and metabolism may serve as diagnostic biomarkers and treatment targets of COPD with MetS.


Asunto(s)
Síndrome Metabólico , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Síndrome Metabólico/genética , Especies Reactivas de Oxígeno , Comunicación Celular , Enfermedad Pulmonar Obstructiva Crónica/genética , Análisis de Secuencia de ARN
10.
J Gene Med ; 26(1): e3607, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37795773

RESUMEN

BACKGROUND: The present study aimed to explore the mechanism of the modified Bushen Yiqi formula (MBYF) in the treatment of chronic obstructive pulmonary disease (COPD) based on network pharmacology and molecular docking. METHODS: First, the active ingredients and corresponding targets in MBYF were mined through the Traditional Chinese Medicine Systems Pharmacology database. Subsequently, Online Mendelian Inheritance in Man, DrugBank, and GeneCard were used to screen COPD-related targets. Cytoscape was used to construct a network of candidate components of MBYF in COPD treatment. The overlapping targets of COPD and MBYF were used to treat COPD, and then CytoHubba and CytoNAC plug-ins in Cytoscape were used for topology analysis to build the core network. In addition, core targets were used for Gene Ontology analysis and enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes. Finally, AutoDock Vina software was used to conduct a molecular docking study on the core active ingredients and core targets to verify the above network pharmacological analysis. RESULTS: Seventy-nine active components of MBYF were screened and 261 corresponding targets were found. At the same time, 1307 related targets corresponding to COPD were screened and 111 overlapping targets were matched. By bioinformatics analysis, 10 core targets were identified, and subsequently, enrichment analysis revealed 385 BP, two CC, eight MF and 78 related signaling pathways. The binding of the core active components in MBYF to the core target was further verified by molecular docking, and all showed good binding. CONCLUSIONS: The active components of MBYF, such as quercetin, kaempferol, luteolin, and baicalein, may be the material basis for the treatment of chronic obstructive pulmonary disease. They affect the expression of inflammatory cells and inflammatory factors, protein phosphorylation, and smooth muscle hyperplasia through tumor necrosis factor, interleukin-17, mitogen-activated protein kinase, nuclear factor-kappa B and other signaling pathways.


Asunto(s)
Farmacología en Red , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Simulación del Acoplamiento Molecular , Biología Computacional , Bases de Datos Genéticas , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
11.
BMC Complement Med Ther ; 23(1): 461, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102661

RESUMEN

BACKGROUND: Astragaloside III (AS III), a saponin-like metabolite derived from the traditional Chinese medicine Astragali Radix, has been shown to be effective in the treatment of cancer and heart failure, and a variety of digestive disorders. However, its molecular mechanism in the treatment of non-small cell lung cancer (NSCLC) is unknown. METHODS: Human lung cancer A549 cells and NCI-H460 cells and a normal human lung epithelial cell BEAS-2B were treated with different concentrations of AS III. CCK-8 and EdU staining were used to determine the anti-proliferative effects of AS III in vitro. Quantitative proteomic analysis was performed on A549 cells treated with the indicated concentrations of AS III, and the expression levels of apoptosis-related proteins were examined by Western blotting. RESULTS: AS III treatment significantly inhibited proliferation and increased apoptosis in A549 and H460 cells and modulated functional signaling pathways associated with apoptosis and metabolism. At the molecular level, AS III promoted a reduction in the expression of ANXA1 (p < 0.01), with increased levels of cleaved Caspase 3 and PARP 1. In addition, AS III treatment significantly decreased the LC3-I/LC3-II ratio. The results of experiment in vitro showed that AS III promoted NSCLC apoptosis by down-regulating the phosphorylation levels of P38, JNK, and AKT (p < 0.01), inhibiting the expression of Bcl-2 (p < 0.01), and up-regulating the expression of Bax (p < 0.01). CONCLUSION: These findings provide a mechanism whereby AS III treatment induces apoptosis in NSCLC cells, which may be achieved in part via modulation of the P38, ERK and mTOR signaling pathways.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteómica , Línea Celular Tumoral , Apoptosis
12.
Drug Des Devel Ther ; 17: 2727-2745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701046

RESUMEN

Purpose: To investigate the effectiveness of modified Bu-Shen-Yi-Qi decoction (MBSYQ) in the treatment of osteoporosis associated with chronic obstructive pulmonary disease (COPD) and its underlying mechanisms of action. Methods: Disease targets, active ingredients and targets were predicted by TTD, CTD, DisGeNET, HERB (BenCaoZuJian as its Chinese name), and multiple-TCM databases; In addition, the screened targets were performed via the online platforms DAVID 6.8 and Metascape for GO and KEGG pathway enrichment analysis; The relationship between the MBSYQ and core targets were verified by molecular docking technique. Then we established a COPD-associated osteoporosis rat model by passive 24-week cigarette exposure. We assessed the efficacy of MBSYQ by lung histopathology assessment and distal femur/the first lumbar vertebra (L1) microstructural assay. In addition, we performed tibial RNA sequencing, which was validated by RT-PCR and Western blot. Results: Screening revealed that the 350 active compounds of MBSYQ anchored 228 therapeutic targets for COPD-related osteoporosis; KEGG pathway enrichment analysis showed that the key targets mainly regulated MAPK and PI3K/AKT signaling pathways. In vivo studies showed that MBSYQ treatment alleviated pathological alterations in lung tissue, and reversed the bone loss and microstructure damage in the femur/L1 of model rats. The RNA seq indicated that MBSYQ could upregulate genes associated with anti-oxidative stress and aerobic respiration. The GSEA analysis displayed that MAPK and PI3K/AKT pathways were inhibited by CS exposure and activated by MBSYQ. Conclusion: MBSYQ is effective in the prevention and treatment of COPD-related osteoporosis, partially achieved by improving oxygen metabolism and activating MAPK and PI3K/AKT pathways.


Asunto(s)
Osteoporosis , Enfermedad Pulmonar Obstructiva Crónica , Animales , Ratas , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transcriptoma , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Osteoporosis/tratamiento farmacológico
13.
Phytomedicine ; 118: 154941, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451150

RESUMEN

BACKGROUND: Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airflow limitation, airway inflammation and remodeling. Icariside II (IS), derived from herbal medicine Herba Epimedii, exerts an anti-inflammatory property. However, underlying mechanisms with specifically targeted molecular expression by IS in asthma have not been fully understood, and whether IS could inhibit remodeling and EMT still remains unclear. PURPOSE: The study aimed to clarify therapeutic efficacy of IS for attenuating airway inflammation and remodeling in asthma, and illustrate IS-regulated specific pathway and target proteins through TMT-based quantitative proteomics. STUDY DESIGN AND METHODS: Murine model of chronic asthma was constructed with ovalbumin (OVA) sensitization and then challenge for 8 weeks. Pulmonary function, leukocyte count in bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory and fibrotic cytokines, and markers of epithelial-mesenchymal transition (EMT) were evaluated. TMT-based quantitative proteomics were performed on lung tissues to explore IS-regulated proteins. RESULTS: IS contributed to alleviative airway hyperresponsiveness (AHR) evidenced by declined RL and increased Cdyn. After IS treatment, we observed a remarked down-regulation of leukocyte count, inflammatory cytokines in BALF, and peribronchial inflammation infiltration. Goblet cell hyperplasia, mucus secretion and peribronchial collagen deposition were attenuated, with the level of TGF-ß and MMP-9 in BALF declined. Furthermore, IS induced a rise of Occludin and E-cadherin and a decline of N-cadherin and α-SMA in lung tissues. These results proved the protective property of IS against airway inflammation, remodeling and EMT. To further investigate underlying mechanisms of IS in asthma treatment, TMT-based quantitative proteomics were performed and 102 overlapped DEPs regulated by IS were identified. KEGG enrichment exhibited these DEPs were enriched in lysosome, phagosome and autophagy, in which LAMP2, CTSD and CTSS were common DEPs. WB, q-PCR and IHC results proofed expressional alteration of these proteins. Besides, IS could decrease Beclin-1 and LC3B expression with increasing p62 expression thus inhibiting autophagy. CONCLUSIONS: The study demonstrated IS could ameliorate AHR, airway inflammation, remodeling and EMT in OVA-induced chronic asthma mice. Our research was the first to reveal that inhibition of LAMP2, CTSD and CTSS expression in autophagy contributed to the therapeutic efficacy of IS to asthma.


Asunto(s)
Asma , Proteómica , Ratones , Animales , Ovalbúmina , Asma/tratamiento farmacológico , Asma/metabolismo , Pulmón/patología , Inflamación/metabolismo , Líquido del Lavado Bronquioalveolar , Citocinas , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
14.
J Ethnopharmacol ; 317: 116810, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37331450

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Numerous studies have provided evidence supporting the significant roles of icariin, in the prevention of multiple chronic diseases like diabetes, liver fibrosis, cardiac fibrosis, renal fibrosis, and pulmonary fibrosis. In particular, Icariside II (ISE II), a prominent flavonoid glycoside derived from Epimedium brevicornum Maxim, the principal metabolite of icariin, has demonstrated noteworthy anti-inflammatory and anti-oxidant properties, along with its ability to protect against lung remodeling. However, the research exploring ISE Ⅱ's application in treating pulmonary fibrosis remains limited. AIM OF THE STUDY: The aim of this study was to assess the therapeutic efficacy of ISE II in models of pulmonary fibrosis, while also investigating its potential mechanisms of action in cell signaling pathways. MATERIALS AND METHODS: An in vitro model of pulmonary fibrosis was established by treating NIH-3T3 cells with transforming growth factor-ß1 (TGF-ß1). Western blot, RT-qPCR, and scratch test were performed to assess the effect of ISE Ⅱ. In addition, a murine model of pulmonary fibrosis was induced by intratracheal instillation of bleomycin, and the therapeutic effect of ISE Ⅱ was tested by orally administering ISE Ⅱ at a dose of 10 mg/kg. Three weeks later, lung function, micro-CT, hydroxyproline content, pathological staining, and cytokines detection of BALF or serum were used to assess the anti-fibrosis effects of ISE Ⅱ. Next, immunofluorescence staining, flow cytometry, and in vivo transcriptomics were used to investigate the underlying mechanisms of action. RESULTS: Our data revealed a significant inhibitory effect of ISE Ⅱ on the upregulation of α-smooth muscle actin (α-SMA) and collagen production induced by TGF-ß1 in fibroblasts. Meanwhile, ISE Ⅱ exerted a therapeutic effect against bleomycin-induced pulmonary fibrosis in mice by improving lung function, decreasing collagen deposition, and reducing the expression of interleukin (IL)-1ß, tumor necrosis factor α (TNF-α), TGF-ß1 and platelet-derived growth factor (PDGF) in serum and bronchoalveolar lavage fluid (BALF). Additionally, ISE Ⅱ treatment effectively attenuated the infiltration of M2 macrophages, concurrently downregulating the expression level of M2 marker genes, such as CD206, arginase-1(Arg-1), and Chitinase-Like Protein 3 (YM-1). Importantly, we observed a statistically significant reduction in the M2 phenotype of interstitial macrophages (IMs). However, the impact of ISE Ⅱ on the M2 polarization of alveolar macrophages (AMs) did not reach statistical significance. Lastly, transcriptome sequencing results suggested that the anti-pulmonary fibrosis effects of ISE Ⅱ may be mediated by the suppression of the WNT/ß-catenin signaling pathway, which modulated M2 polarization in macrophages and contributed to the amelioration of pulmonary fibrosis. By immunohistochemical analysis, it was verified that ISE Ⅱ treatment dramatically inhibited the activation of ß-catenin in fibrosis murine. CONCLUSION: Our findings indicated that ISE Ⅱ exerted anti-fibrotic effects by inhibiting pro-fibrotic macrophage polarization. The underlying mechanism of action might be mediated by modulating the WNT/ß-catenin signaling pathway to inhibit the M2 program in IMs.


Asunto(s)
Fibrosis Pulmonar , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Bleomicina/toxicidad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Flavonoides/farmacología , Macrófagos/metabolismo , Colágeno/metabolismo , Vía de Señalización Wnt , Ratones Endogámicos C57BL
15.
Phytother Res ; 37(9): 4002-4017, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37128812

RESUMEN

Persistent chronic inflammation of the lungs and airway remodeling are important pathological features that cannot be ignored in patients with chronic asthma. Apigenin (API) is a natural small molecule compound with good anti-inflammatory and antioxidant activity that has been widely reported in recent years, but its role in chronic asthma is not well defined. Our study began with oral gavage intervention using API (10, 20 mg/kg) or dexamethasone (DEX, 2 mg/kg) in a BALB/c mouse model of ovalbumin (OVA) sensitization. Different doses of API intervention effectively reduced airway resistance in the administered group. Additionally, inflammation was downregulated, mucus secretion was reduced, and airway remodeling was inhibited in the API intervention group compared with the model group. Asthma-related inflammatory cytokines, such as IgE, IL-4, IL-5, IL-13, and IL-17, were downregulated in alveolar lavage fluid. Moreover, the apoptosis level of the administered group was found to be lower than that of the model group in the Tunel staining experiment. By analyzing transcriptome sequencing results, we found that API may exert anti-inflammatory and anti-apoptotic effects by inhibiting the MAPK pathway. Our subsequent results supported this conclusion, showing that the phosphorylation levels of ERKs, JNKs, and p38 MAPKs were inhibited in the administered group relative to the model group. Downstream expression of the apoptosis-related protein B-cell lymphoma-2 (Bcl-2) was upregulated, and the expression of Bcl-2-associated × protein (Bax) and cleaved caspase-3 was downregulated. To further investigate the specific mechanism by which API acted, we established an in vitro model with house dust mite (HDM) stimulation, using API (10, 20 µM) for administration intervention. The results showed that API was able to improve cell viability, inhibit ROS production, and reverse HDM-induced decreases in mitochondrial membrane potential (MMP) and apoptosis in airway epithelial cells via the MAPK pathway.


Asunto(s)
Apigenina , Asma , Animales , Ratones , Apigenina/farmacología , Remodelación de las Vías Aéreas (Respiratorias) , Transcriptoma , Asma/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Apoptosis , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
16.
J Ethnopharmacol ; 315: 116691, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37247682

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jia-Wei-Bu-Shen-Yi-Qi formula (JWBSYQF), a classical traditional Chinese herbal formula consisting of five herbs, is used clinically in China to treat inflammatory lung diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Its mechanism for treating asthma and COPD has been reported, however, how it works against IPF remains unclear. RESEARCH PURPOSE: Our study aims to observe the therapeutic effect of JWBSYQF on pulmonary fibrosis and further identify the potential active ingredients and molecular pathways. RESEARCH METHODS: In this study, we used a bleomycin-induced mouse model to investigate the therapeutic effect of JWBSYQF on pulmonary fibrosis. To further explore the potential effective ingredients and molecular pathways, we used the network pharmacology approach to construct a drug-ingredient-target network of JWBSYQF. Then, the common target set was established for JWBSYQF, fibroblast, and lung fibrosis. Analyses of the KEGG pathway, GO enrichment, and network topology were performed to identify key biological processes and molecular pathways for the common targets. Finally, a TGF-ß-induced NIH/3T3 proliferation and activation model was used to validate the possible active ingredients and signaling pathways. RESEARCH RESULTS: JWBSYQF reversed BLM-induced balf leukocyte levels, pulmonary inflammatory lesions and fibrotic collagen deposition in mice and reduced the levels of a-SMA, Col1a1 and TGF-ß. A total of 86 active ingredients were identified, 12 of which were considered as potential effective ingredients, while only baicalein effectively improved TGF-ß-induced proliferation and activation of NIH/3T3. KEGG results showed that PI3K/Akt signaling pathway may be the potential action mechanism, and Western Blot demonstrated that both JWBSYQF and baicalein downregulated the protein levels of p-PI3K and p-Akt. The molecular docking results suggest that baicalein may have a direct effect on the catalytic and regulatory subunits of P13K, which is stronger than direct binding to Aktl. CONCLUSIONS: Our study revealed that baicalein may be the material basis for JWBSYQF in the treatment of pulmonary fibrosis, and the PI3K/Akt signaling pathway may be a common pathway of action for JWBSYQF and baicalein.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Fibrosis Pulmonar Idiopática , Enfermedad Pulmonar Obstructiva Crónica , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Farmacología en Red , Simulación del Acoplamiento Molecular , Transducción de Señal , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
17.
Mater Today Bio ; 20: 100643, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37214555

RESUMEN

Pulmonary fibrosis that occurs following lung injury is a progressive and fatal disease since continual damage to lung tissue triggers the dysregulated inflammation response and accompanying abnormal healing process. Pyroptosis of alveolar macrophages has been found to play an essential role in the deterioration of lung injury and fibrosis. However, the lack of inhibitors against this inflammatory cell death in macrophages and the dense stroma pose major barriers to lung injury and fibrosis treatment. Herein, we developed an albumin-based nanoformulation to realize active delivery of formononetin (FMN) to improve the treatment of lung injury and fibrosis. The obtained nanoparticle, FMN@BSA NPs, could efficiently accumulate at the impaired lesion benefiting from the leaky vasculatures and the affinity between albumin and the overexpressed SPARC protein. Through blocking the NLRP3 inflammasome-involved pyroptosis process of macrophages, FMN@BSA NPs remarkably improved lung function and prolonged animal survival in the bleomycin (BLM)-induced lung injury and fibrosis model without noticeable side effects. Meanwhile, we proved FMN as a pyroptosis inhibitor and the corresponding lipid metabolism-related mechanisms through multi-omics analysis. This study first employed an albumin-based nanoparticle to deliver the pyroptosis inhibitor to the impaired lung tissue actively, providing a promising strategy for lung injury and fibrosis treatment.

18.
Front Immunol ; 14: 1140791, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063888

RESUMEN

Autophagy is an evolutionarily conserved cellular process capable of degrading various biological molecules and organelles via the lysosomal pathway. Ferroptosis is a type of oxidative stress-dependent regulated cell death associated with the iron accumulation and lipid peroxidation. The crosslinks between ferroptosis and autophagy have been focused on since the dependence of ferroptosis on autophagy was discovered. Although the research and theories on the relationship between autophagy and ferroptosis remain scattered and fragmented, the crosslinks between these two forms of regulated cell death are closely related to the treatment of various diseases. Thereof, asthma as a chronic inflammatory disease has a tight connection with the occurrence of ferroptosis and autophagy since the crosslinked signal pathways may be the crucial regulators or exactly regulated by cells and secretion in the immune system. In addition, non-immune cells associated with asthma are also closely related to autophagy and ferroptosis. Further studies of cross-linking asthma inflammation with crosslinked signaling pathways may provide us with several key molecules that regulate asthma through specific regulators. The crosslinks between autophagy and ferroptosis provide us with a new perspective to interpret and understand the manifestations of asthma, potential drug discovery targets, and new therapeutic options to effectively intervene in the imbalance caused by abnormal inflammation in asthma. Herein, we introduce the main molecular mechanisms of ferroptosis, autophagy, and asthma, describe the role of crosslinks between ferroptosis and autophagy in asthma based on their common regulatory cells or molecules, and discuss potential drug discovery targets and therapeutic applications in the context of immunomodulatory and symptom alleviation.


Asunto(s)
Asma , Ferroptosis , Humanos , Hierro/metabolismo , Autofagia , Inflamación
19.
BMC Pulm Med ; 23(1): 91, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944966

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease of the lung. How to build a typical human mimicking animal model has been a challenge. Thus, to reveal the mechanism and to make it useful for IPF clinical treatment, a different type of mice model and inspection methods are used to evaluate which one is applicable for the study of IPF. METHOD: 69 Twelve-weeks-old C57BL/6 mice were divided into 3 type groups (n = 7 for each control group, n = 8 for each BLM-induced pulmonary fibrosis groups), as intraperitoneal injection, intratracheal administration, and intravenous administration of bleomycin (BLM) to initiate lung fibrosis. Changes of the lung function measured through mice Pulmonary function test (PFT). Morphological changes in mice were observed by PET/CT, Masson and Picro-Sirius staining, Transmission electron microscopy (TEM). Biochemical changes were tested by Enzyme-linked immunosorbent assay (Elisa). RESULTS: PET/CT of BLM-receiving mice showed an increase in fibrotic consolidations and an increase in non-aerated lung area in BLM-treated mice compared with that in controls. TGF-b1, TNF-a, IL-6, GM-CSF in BALF and serum. PAI-1, HYP in the lung tissue of mice were significantly different in each BLM groups than those in the controls. The results of Masson staining in mice indicate that the lung tissues of all BLM received groups, the intratracheal groups, the intravenous groups, and the intraperitoneal groups have a higher degree of pulmonary septal thickening and collagen fiber consolidation compare to saline control. Picro-Sirius staining results are consistent with the results of Masson staining. Compared with the saline control group, the ratio of Col 1/Col 3 was significantly increased in each BLM group. TEM results found that in BLM group, type I alveolar epithelial cells were degenerated. Exfoliated endothelial cells were swelling, and type II alveolar epithelial cells were proliferated, the shape of the nucleus was irregular, and some tooth-like protrusions were seen. CONCLUSIONS: With three different methods of animal model construction, high dose of each show more compliable, and BLM can successfully induce animal models of pulmonary fibrosis, however, certain differences in the fibrosis formation sites of them three, and tail vein injection of BLM induced PF model is closer to the idiopathic pulmonary interstitial fibrosis.


Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Ratones , Humanos , Animales , Bleomicina/toxicidad , Células Endoteliales , Tomografía Computarizada por Tomografía de Emisión de Positrones , Líquido del Lavado Bronquioalveolar , Ratones Endogámicos C57BL , Pulmón , Fibrosis Pulmonar Idiopática/inducido químicamente , Modelos Animales de Enfermedad
20.
Ther Adv Respir Dis ; 17: 17534666231155748, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36942731

RESUMEN

BACKGROUND: To better understand the development of therapy for asthma, grasp the core paradigm associated with the transformation of cognition of asthma treatment and asthma, explore potential and effective therapies for asthma, discover new biomarkers and mechanisms related to asthma treatment, find novel targets for anti-asthma drugs, and predict the future trends of asthma therapy, we used a bibliometric analysis to research articles related to the therapies for asthma published from 1983 to 2022. METHODS: A comprehensive search was conducted to analyze the articles associated with therapy for asthma with the help of the Web of Science Core Collection (WOSCC) database from January 1, 1983 to August 14, 2022. The CiteSpace 6.1.R2 software and VOS viewer 6.1.8 software were utilized to analyze the overall structure of the network, network clusters, links between clusters, key nodes, and pathways. RESULTS: A total of 3902 publications related to therapies on asthma were published in 3211 academic journals by a total of 14,655 authors in 3476 organizations from 87 countries or regions from 1983 to 2022. The United States published the most articles (n = 1143), followed by England (n = 574) and China (n = 405). However, the centrality of China was 0.4, higher than the United States (centrality = 0.16) and Singapore (centrality = 0.11). Akdis Cezmi published the most papers. Journal of Allergy and Clinical Immunology published the most studies on therapies for asthma. Asthma was the most frequent keyword (n = 594). The betweenness centrality value of keywords that were greater than 0.1 included airway inflammation (centrality = 0.22), double blind (centrality = 0.18), asthma (centrality = 0.17), inflammation (centrality = 0.12), and inhaled corticosteroid (centrality = 0.11). CONCLUSIONS: The results from this biometric review provide insight into the development of therapy for asthma, the paradigm of recognition of this field, the approach of discovering new targets, exploration and combination of new mechanisms, and the frontier trend of this field in future.


Asunto(s)
Asma , Humanos , Asma/diagnóstico , Asma/tratamiento farmacológico , China , Bases de Datos Factuales , Inglaterra , Inflamación , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA