Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 838
1.
Mol Ther ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38822524

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide-isomerase A3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein (CRP) level and disease activity score 28 (DAS28). Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor (TCR) signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing Th1 and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.

2.
Protein Cell ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38779805

Microbial communities such as those residing in the human gut are highly diverse and complex, and many with important implications in health and diseases. The effects and functions of these microbial communities are determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable technologies capable of acquiring single-microbe-resolution RNA sequencing information in order to achieve comprehensive understanding of complex microbial communities together with their hosts is therefore utterly needed. Here we report the development and utilization of a droplet-based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we established a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive responses states among species in Prevotella and Roseburia genus and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our results indicated the smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is highly adaptable to complex microbial communities in real-word situations and promises new perspectives in the understanding of human microbiomes.

3.
Int J Oncol ; 64(6)2024 06.
Article En | MEDLINE | ID: mdl-38757347

Cellular senescence has a complex role in lymphocyte carcinogenesis and drug resistance of lymphomas. Senescent lymphoma cells combine with immunocytes to create an ageing environment that can be reprogrammed with a senescence­associated secretory phenotype, which gradually promotes therapeutic resistance. Certain signalling pathways, such as the NF­κB, Wnt and PI3K/AKT/mTOR pathways, regulate the tumour ageing microenvironment and induce the proliferation and progression of lymphoma cells. Therefore, targeting senescence­related enzymes or their signal transduction pathways may overcome radiotherapy or chemotherapy resistance and enhance the efficacy of relapsed/refractory lymphoma treatments. Mechanisms underlying drug resistance in lymphomas are complex. The ageing microenvironment is a novel factor that contributes to drug resistance in lymphomas. In terms of clinical translation, some senolytics have been used in clinical trials on patients with relapsed or refractory lymphoma. Combining immunotherapy with epigenetic drugs may achieve better therapeutic effects; however, senescent cells exhibit considerable heterogeneity and lymphoma has several subtypes. Extensive research is necessary to achieve the practical application of senolytics in relapsed or refractory lymphomas. This review summarises the mechanisms of senescence­associated drug resistance in lymphoma, as well as emerging strategies using senolytics, to overcome therapeutic resistance in lymphoma.


Cellular Senescence , Drug Resistance, Neoplasm , Lymphoma , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cellular Senescence/drug effects , Lymphoma/drug therapy , Lymphoma/pathology , Lymphocytes/immunology , Lymphocytes/drug effects , Signal Transduction/drug effects , Carcinogenesis/drug effects , Senotherapeutics/pharmacology , Senotherapeutics/therapeutic use , Aging
4.
Front Microbiol ; 15: 1367297, 2024.
Article En | MEDLINE | ID: mdl-38751722

This research aimed to address the issue of aflatoxin B1 (AFB1) contamination, which posed severe health and economic consequences. This study involved exploring unique species resources in the Qinghai-Tibet Plateau, screening strains capable of degrading AFB1. UPLC-Q-Orbitrap HRMS and NMR were employed to examine the degradation process and identify the structure of the degradation products. Results showed that Bacillus amyloliquefaciens YUAD7, isolated from yak dung in the Qinghai-Tibet Plateau, removed 91.7% of AFB1 from TSB-AFB1 medium with an AFB1 concentration of 10 µg/mL (72 h, 37°C, pH 6.8) and over 85% of AFB1 from real food samples at 10 µg/g (72 h, 37°C), exhibiting strong AFB1 degradation activity. Bacillus amyloliquefaciens YUAD7's extracellular secretions played a major role in AFB1 degradation mediated and could still degrade AFB1 by 43.16% after boiling for 20 min. Moreover, B. amyloliquefaciens YUAD7 demonstrated the capability to decompose AFB1 through processes such as hydrogenation, enzyme modification, and the elimination of the -CO group, resulting in the formation of smaller non-toxic molecules. Identified products include C12H14O4, C5H12N2O2, C10H14O2, C4H12N2O, with a structure consisting of dimethoxyphenyl and enoic acid, dimethyl-amino and ethyl carbamate, polyunsaturated fatty acid, and aminomethyl. The results indicated that B. amyloliquefaciens YUAD7 could be a potentially valuable strain for industrial-scale biodegradation of AFB1 and providing technical support and new perspectives for research on biodegradation products.

5.
Phytomedicine ; 130: 155723, 2024 May 16.
Article En | MEDLINE | ID: mdl-38815405

BACKGROUND: Alzheimer's disease (AD) is a neurological disorder. There is a considerable unmet medical need among those suffering from it. HYPOTHESIS AND PURPOSE: Given the link between type-2 diabetes mellitus (T2DM) and AD, hypoglycemic traditional Chinese medicine formulas (TCMFs) may be a treatment for AD. We investigated the possibility of identifying anti-AD medicines in hypoglycemic TCMFs and presented another option for the screening of AD medications. STUDY DESIGN AND METHODS: Paralysis of the transgenic Caenorhabditis elegans (C. elegans) strain CL4176 (caused by amyloid beta (Aß)1-42 aggregates) was used to evaluate the anti-AD effect. The toxicity and neurodegeneration induced by neuronal expression of Aß in the transgenic C. elegans strain CL2355 were determined using a 5-hydroxytryptamine (5-HT) assay. The transgenic Aß-expressing strain CL 2006 and transgenic tau-expressing strain BR5270 were used to explore the effect of TCMFs on protein expression in C. elegans using ELISAs. Then, network pharmacology was used to determine the mechanism of action. The Traditional Chinese Medicine Inheritance Support System platform was used to investigate prescription patterns, core drugs, and optimum combinations of hypoglycemic TCMFs for AD. RESULTS: Sixteen hypoglycemic TCMFs prolonged the PT50 (half paralysis time) of the CL4176 strain of C. elegans, reduced the percentage of worms paralyzed. The results of network pharmacology showed that prostaglandin-endoperoxide synthase 2 (PTGS2) and acetylcholine esterase (AChE) are main targets of hypoglycemic TCMFs. Enriched pathway analysis showed that the cholinergic receptor-related pathway was the core pathway of hypoglycemic TCMFs. According to the "four qi and five flavors" system of TCM theory, the main pharmacological qualities were "cold" and "sweet." Through the analysis by TCMISS, we found that Huangqi-Gegen drug pair as the significant Chinese herbs of hypoglycemic TCMFs. The Huangqi-Gegen pairing had the most robust therapeutic effect when delivered at a 2:1 (v/v) ratio. It reduced the paralysis caused by 5-HT, decreased protein expression of AChE and PTGS2, and reduced Aß deposition in the brain of the CL2006 strain of C. elegans. CONCLUSIONS: Huangqi-Gegen is a promising treatment of AD, and its mechanism may be induced by suppressing the protein production of AChE and PTGS2, reducing 5-HT intake, and then decreasing Aß deposition.

6.
Int J Biol Sci ; 20(7): 2763-2778, 2024.
Article En | MEDLINE | ID: mdl-38725845

Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting ß-catenin/TGF-ß1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.


Aldehyde Dehydrogenase, Mitochondrial , Carcinoma, Hepatocellular , Liver Neoplasms , T-Lymphocytes, Regulatory , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Humans , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , Male , Mice , Multiomics
7.
PLoS One ; 19(5): e0302879, 2024.
Article En | MEDLINE | ID: mdl-38709714

BACKGROUND: The incidence of childhood malnutrition i.e., both obesity and undernutrition, is on a rise. While there is extensive evidence of the influence of body mass index (BMI) on the survival and other important outcomes of adult cancers, the impact of childhood BMI on one of the common pediatric cancers i.e., leukemia is not well studied. METHODS: Systematic search of PubMed, Scopus, and Google Scholar databases was done to identify studies that were conducted among pediatric patients with leukemia and had examined outcomes of interest based on BMI at the time of diagnosis. RESULTS: Effect sizes were reported as pooled hazards ratio (HR) along with 95% confidence intervals (CI). A total of 17 studies were included. Compared to pediatric leukemia patients with normal BMI, underweight (HR 1.07, 95% CI: 1.04, 1.11) and obese (HR 1.42, 95% CI: 1.18, 1.71) children with leukemia had higher risks of overall mortality. Underweight (HR 1.10, 95% CI: 1.02, 1.19) and obese (HR 1.34, 95% CI: 1.15, 1.55) pediatric leukemia patients had a tendency to lower event-free survival compared to children with normal BMI. The risk of relapse was not significant for underweight, overweight, and obese children. CONCLUSIONS: Both underweight and obese status at the time of diagnosis were associated with poor survival outcomes in pediatric patients with leukemia.


Body Mass Index , Humans , Child , Leukemia/diagnosis , Leukemia/mortality , Leukemia/complications , Thinness/complications , Obesity/complications , Child, Preschool
8.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Article En | MEDLINE | ID: mdl-38690966

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Breast Neoplasms , Fluorescence Resonance Energy Transfer , Quantum Dots , RNA , Telomerase , Humans , Telomerase/metabolism , Telomerase/analysis , Quantum Dots/chemistry , RNA/metabolism , RNA/analysis , Female , Carbocyanines/chemistry , Biosensing Techniques/methods
9.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1834-1847, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812196

This study compared the therapeutic difference effects of the raw and scorched rhubarb for the treatment of ulcerative colitis(UC) and explored their difference in chemical components and mechanisms by using ultra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-QE-Orbitrap-MS) and network pharmacology. The UC therapeutic effects of Shaoyao Decoction with the raw rhubarb or the scorched rhubarb were evaluated by dextran sulfate sodium(DSS)-induced mouse model. The results showed that Shaoyao Decoction with either the raw rhubarb or the scorched rhubarb could relieve the UC symptoms of mice to different extents, while the scorched rhubarb-based formula showed advantages in reducing hemorrhagic diarrhea and inflammation levels. UPLC-QE-Orbitrap-MS was used to identify a total of 78 small molecules in the water decoction of the raw and scorched rhubarb. Multivariate statistical methods were used to screen components increasing significantly after the scorching process. The seven compounds included five free anthraquinones, gallic acid, and 5-hydroxymethylfurfural(HMF). Meanwhile, the nine compounds decreasing scorching were mainly combined anthraquinones and catechins-related compounds. Network pharmacology and molecular docking suggested that free anthraquinones, gallic acid, and 5-HMF may act on core targets such as B-cell lymphoma-2(BCL2), epidermal growth factor receptor(EGFR), tumor necrosis factor(TNF), and caspase-3(CASP3) and influence the signaling pathways such as phosphoinositide-3-kinase/protein kinase B(PI3K/Akt), hypoxia inducible factor-1(HIF-1), TNF, and mitogen-activated protein kinase(MAPK), so as to regulate the inflammation response, oxidative stress, and cell apoptosis to relieve UC symptoms. This study compared the therapeutic effects and chemical components of the raw and scorched rhubarb, providing the clinical reference for using rhubarb to treat UC.


Colitis, Ulcerative , Drugs, Chinese Herbal , Mass Spectrometry , Network Pharmacology , Rheum , Rheum/chemistry , Animals , Colitis, Ulcerative/drug therapy , Mice , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Chromatography, High Pressure Liquid/methods , Male , Humans
10.
Biomed Environ Sci ; 37(3): 266-277, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38582991

Objective: The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area, namely, Qunlu Practice Base, Peach Blossom Garden, and Huangtong Animal Husbandry, and whether vectors carry any bacterial pathogens that may cause diseases to humans, to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods: Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit (OPU) analysis, we characterized the species-level microbial community structure of two important vector species, biting midges and ticks, including 33 arthropod samples comprising 3,885 individuals, collected around Poyang Lake. Results: A total of 662 OPUs were classified in biting midges, including 195 known species and 373 potentially new species, and 618 OPUs were classified in ticks, including 217 known species and 326 potentially new species. Surprisingly, OPUs with potentially pathogenicity were detected in both arthropod vectors, with 66 known species of biting midges reported to carry potential pathogens, including Asaia lannensis and Rickettsia bellii, compared to 50 in ticks, such as Acinetobacter lwoffii and Staphylococcus sciuri. We found that Proteobacteria was the most dominant group in both midges and ticks. Furthermore, the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria. Pantoea sp7 was predominant in biting midges, while Coxiella sp1 was enriched in ticks. Meanwhile, Coxiella spp., which may be essential for the survival of Haemaphysalis longicornis Neumann, were detected in all tick samples. The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion: Biting midges and ticks carry large numbers of known and potentially novel bacteria, and carry a wide range of potentially pathogenic bacteria, which may pose a risk of infection to humans and animals. The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.


Ceratopogonidae , Microbiota , Ticks , Animals , Humans , Ticks/microbiology , Ceratopogonidae/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Prospective Studies , Coxiella/genetics
11.
Heliyon ; 10(7): e29168, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38617966

Background: Lipid metabolism disorders have become a major global public health issue. Due to the complexity of these diseases, additional research and drugs are needed. Oroxin A, the major component of Oroxylum indicum (L.) Kurz (Bignoniaceae), can improve the lipid profiles of diabetic and insulin-resistant (IR) rats. Because insulin resistance is strongly correlated with lipid metabolism, improving insulin resistance may also constitute an effective strategy for improving lipid metabolism. Thus, additional research on the efficacy and mechanism of oroxin An under non-IR conditions is needed. Methods: In this study, we established lipid metabolism disorder model rats by high-fat diet feeding and fatty HepG2 cell lines by treatment with oleic acid and evaluated the therapeutic effect and mechanism of oroxin A in vitro and in vivo through biochemical indicator analysis, pathological staining, immunoblotting, and immunofluorescence staining. Results: Oroxin A improved disordered lipid metabolism under non-IR conditions, improved the plasma and hepatic lipid profiles, and enhanced the lipid-lowering action of atorvastatin. Additionally, oroxin A reduced the total triglyceride (TG) levels by inhibiting sterol regulatory element-binding protein 1 (SREBP1) expression and reducing the expression of acetyl coenzyme A carboxylase (ACC) and fatty acid synthase (FASN) in vivo and in vitro. Oroxin A also reduced the total cholesterol (TC) levels by inhibiting SREBP2 expression and reducing HMGCR expression in vivo and in vitro. In addition, oroxin A bound to low-density lipoprotein receptor (LDLR) and increased AMPK phosphorylation. Conclusions: Our results suggested that oroxin A may modulate the nuclear transcriptional activity of SREBPs by binding to LDLR proteins and increasing AMPK phosphorylation. Oroxin A may thus reduce lipid synthesis and could be used for the treatment and prevention of lipid metabolism disorders.

12.
J Adv Res ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38631431

BACKGROUND: The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW: To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW: This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124244, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38579425

Clinical and experimental evidences have confirmed the significant therapeutic effects of rhubarb on ulcerative colitis (UC), but the strong purgative function of rhubarb also aggravates UC symptoms such as bloody diarrhea. Stir-baking to scorch is a traditional Chinese medicinal processing method that can eliminate the adverse purgative function while keep or even enhance the UC therapeutic function of rhubarb. However, the under-baked rhubarb still have the undesirable purgative function, but the over-baked rhubarb may lose the required medicinal functions. Therefore, the determination of the right endpoint is the primary quality concern about the baking process of rhubarb. In this research, typical anthraquinone compounds and mid-infrared (MIR) spectra were recruited to determine the best baking degree of rhubarb for UC therapy. Raw rhubarb slices were baked at 180 °C with rotation to prepare the rhubarbs with different baking degrees. The right-baked rhubarb was defined according to the UC therapeutic responses as well as the traditional color criterion. Referring to the typical anthraquinone compounds in rhubarb slices and extracts, the baking degree of rhubarb may be assessed by the conversion ratio of anthraquinone glycosides to anthraquinone aglycones. MIR spectra showed the gradual decompositions of organic compounds including anthraquinone glycosides and tannins during the baking process. Rhubarbs with different baking degrees can be distinguished clearly by MIR-based principal component analysis. In conclusion, the ratio of anthraquinone glycosides to anthraquinone aglycones may be a reasonable chemical indicator of the right-baked rhubarb. Meanwhile, MIR spectroscopy can identify the right-baked rhubarb simply and rapidly.


Colitis, Ulcerative , Drugs, Chinese Herbal , Rheum , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Colitis, Ulcerative/drug therapy , Rheum/chemistry , Cathartics/pharmacology , Anthraquinones/analysis , Glycosides
14.
Sci Rep ; 14(1): 8176, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589505

Knee osteoarthritis (KOA) usually leads to quadriceps femoris atrophy, which in turn can further aggravate the progression of KOA. Curcumin (CUR) has anti-inflammatory and antioxidant effects and has been shown to be a protective agent for skeletal muscle. CUR has been shown to have a protective effect on skeletal muscle. However, there are no studies related to whether CUR improves KOA-induced quadriceps femoris muscle atrophy. We established a model of KOA in rats. Rats in the experimental group were fed CUR for 5 weeks. Changes in autophagy levels, reactive oxygen species (ROS) levels, and changes in the expression of the Sirutin3 (SIRT3)-superoxide dismutase 2 (SOD2) pathway were detected in the quadriceps femoris muscle of rats. KOA led to quadriceps femoris muscle atrophy, in which autophagy was induced and ROS levels were increased. CUR increased SIRT3 expression, decreased SOD2 acetylation and ROS levels, inhibited the over-activation of autophagy, thereby alleviating quadriceps femoris muscle atrophy and improving KOA. CUR has a protective effect against quadriceps femoris muscle atrophy, and KOA is alleviated after improvement of quadriceps femoris muscle atrophy, with the possible mechanism being the reduction of ROS-induced autophagy via the SIRT3-SOD2 pathway.


Curcumin , Osteoarthritis, Knee , Sirtuin 3 , Superoxide Dismutase , Rats , Animals , Reactive Oxygen Species/metabolism , Osteoarthritis, Knee/pathology , Quadriceps Muscle/metabolism , Sirtuin 3/metabolism , Curcumin/pharmacology , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Autophagy , Signal Transduction
15.
Front Psychol ; 15: 1327822, 2024.
Article En | MEDLINE | ID: mdl-38659667

Exercise can induce brain plasticity. Functional near-infrared spectroscopy (fNIRS) is a functional neuroimaging technique that exploits cerebral hemodynamics and has been widely used in the field of sports psychology to reveal the neural mechanisms underlying the effects of exercise. However, most existing fNIRS studies are cross-sectional and do not include exercise interventions. In addition, attributed to differences in experimental designs, the causal relationship between exercise and brain functions remains elusive. Hence, this systematic review aimed to determine the effects of exercise interventions on alterations in brain functional activity in healthy individuals using fNIRS and to determine the applicability of fNIRS in the research design of the effects of various exercise interventions on brain function. Scopus, Web of Science, PubMed, CNKI, Wanfang, and Weipu databases were searched for studies published up to June 15, 2021. This study was performed in accordance with the PRISMA guidelines. Two investigators independently selected articles and extracted relevant information. Disagreements were resolved by discussion with another author. Quality was assessed using the Cochrane risk-of-bias method. Data were pooled using random-effects models. A total of 29 studies were included in the analysis. Our results indicated that exercise interventions alter oxygenated hemoglobin levels in the prefrontal cortex and motor cortex, which are associated with improvements in higher cognitive functions (e.g., inhibitory control and working memory). The frontal cortex and motor cortex may be key regions for exercise-induced promotion of brain health. Future research is warranted on fluctuations in cerebral blood flow during exercise to elucidate the neural mechanism underlying the effects of exercise. Moreover, given that fNIRS is insensitive to motion, this technique is ideally suited for research during exercise interventions. Important factors include the study design, fNIRS device parameters, and exercise protocol. The examination of cerebral blood flow during exercise intervention is a future research direction that has the potential to identify cortical hemodynamic changes and elucidate the relationship between exercise and cognition. Future studies can combine multiple study designs to measure blood flow prior to and after exercise and during exercise in a more in-depth and comprehensive manner.

16.
Phys Rev Lett ; 132(15): 150401, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38683009

Quantum many-body scars are nonthermal excited eigenstates of nonintegrable Hamiltonians, which could support coherent revival dynamics from special initial states when scars form an equally spaced tower in the energy spectrum. For open quantum systems, engineering many-body scarred dynamics by a controlled coupling to the environment remains largely unexplored. Here, we provide a general framework to exactly embed quantum many-body scars into the decoherence-free subspaces of Lindblad master equations. The dissipative scarred dynamics manifest persistent periodic oscillations for generic initial states, and can be practically utilized to prepare scar states with potential quantum metrology applications. We construct the Liouvillian dissipators with the local projectors that annihilate the whole scar towers, and utilize the Hamiltonian part to rotate the undesired states out of the null space of dissipators. We demonstrate our protocol through several typical models hosting many-body scar towers and propose an experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and resetting ancilla qubits.

17.
Int J Biol Macromol ; 268(Pt 2): 131839, 2024 May.
Article En | MEDLINE | ID: mdl-38663699

Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.


ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors , Apoptosis , Endothelial Cells , Hemolysin Proteins , Streptococcus suis , Streptococcus suis/pathogenicity , Streptococcus suis/metabolism , Humans , Animals , Apoptosis/drug effects , Mice , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/microbiology , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Streptococcal Infections/microbiology , Streptococcal Infections/metabolism , Virulence , Brain/metabolism
18.
Annu Rev Neurosci ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684081

The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable-the allocentric position of the animal-with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.

19.
Front Cell Infect Microbiol ; 14: 1323261, 2024.
Article En | MEDLINE | ID: mdl-38444539

Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.


Biological Products , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Hepatocytes
20.
Eur Respir Rev ; 33(171)2024 Jan 31.
Article En | MEDLINE | ID: mdl-38537947

COPD poses a significant global public health challenge, primarily characterised by irreversible airflow restriction and persistent respiratory symptoms. The hallmark pathology of COPD includes sustained airway inflammation and the eventual destruction of lung tissue structure. While multiple risk factors are implicated in the disease's progression, the underlying mechanisms remain largely elusive. The perpetuation of inflammation is pivotal to the advancement of COPD, emphasising the importance of investigating these self-sustaining mechanisms for a deeper understanding of the pathogenesis. Autoimmune responses constitute a critical mechanism in maintaining inflammation, with burgeoning evidence pointing to their central role in COPD progression; yet, the intricacies of these mechanisms remain inadequately defined. This review elaborates on the evidence supporting the presence of autoimmune processes in COPD and examines the potential mechanisms through which autoimmune responses may drive the chronic inflammation characteristic of the disease. Moreover, we attempt to interpret the clinical manifestations of COPD through autoimmunity.


Pulmonary Disease, Chronic Obstructive , Humans , Autoimmunity , Lung/pathology , Risk Factors , Inflammation
...