Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Heliyon ; 10(7): e28646, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38586325

The structural and electronic properties of ReS2 different forms - three-dimensional bulk and two-dimensional monolayer - were studied within density functional theory and pseudopotentials. A method for standardizing the description of bulk unit cells and "artificial" slab unit cells for DFT research has been proposed. The preference of this method for studying zone dispersion has been shown. The influence of the vacuum layer thickness on specified special high-symmetry points is discussed. Electron band dispersion in both classical 3D Brillouin zones and transition to 2D Brillouin zones in the proposed two-dimensional approach using the Niggli form of the unit cell was compared. The proposed two-dimensional approach is preferable for low-symmetry layered crystals such as ReS2. It was established that the bulk ReS2 is a direct gap semiconductor (band gap of 1.20 eV), with the direct transition lying in the X point of the first Brillouin zone, and it is in good agreement with published experimental data. The reduction in material dimension from bulk to monolayer was conducted with an increasing band gap up to 1.45 eV, with a moving direct transition towards the Brillouin zone center. The monolayer of ReS2 is a direct-gap semiconductor in a wide range of temperatures, excluding only a narrow range at low temperatures, where it comes as a quasi-direct gap semiconductor. The transition, situated directly in the Γ-point, lies 3.3 meV below the first direct transition located near this point. The electronic density of states of ReS2 in the bulk and monolayer cases of ReS2 were analyzed. The molecular orbitals were built for both types of ReS2 structures as well as the electron difference density maps. For all types of ReS2 structures, an analysis of populations according to Mulliken and Voronoi was carried out. All calculated data is discussed in the context of weak quantum confinement in the 2D case.

2.
RSC Adv ; 13(35): 24491-24498, 2023 Aug 11.
Article En | MEDLINE | ID: mdl-37588974

W-Bi2O3 composites were fabricated using the hot isostatic pressing technique for the first time. The duration of the samples sintering was 3 minutes under conditions of high pressure and temperature. The study of microstructural features and chemical composition of sintered samples was carried out using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The effect of temperature on the quality of the obtained W-Bi2O3 composites is determined. The densest samples were obtained at a pressure of 5 GPa and temperatures of 25 °C and 500 °C, the densities of which were 18.10 and 17.85 g cm-3, respectively. It is presented that high temperature exposure during sintering adversely affects both the composite density and microstructure due to the redox reaction accompanied by the reduction of Bi and the oxidation of W. The results of the W-Bi2O3 structure study using X-ray diffraction analysis showed that all samples included the main bulk-centered cubic W phase. The presence of the WO2 phase is noted only when the sintering temperature is increased up to 850 °C, which is confirmed by the appearance of diffraction peaks that correspond to 111 and 22-2 crystallographic planes. The shielding efficiency of the W-Bi2O3 composite against gamma radiation using the Phy-X/PSD software was evaluated. A Co60 isotope with an energy of 0.826-2.506 MeV was used as a source of gamma radiation. The calculation results were compared with those for Pb and Bi. Key shielding parameters such as the linear attenuation coefficient, half-value layer, tenth-value layer, mean free path, and effective atomic number are determined. The calculation results revealed that the W-Bi2O3 composite surpasses Pb and Bi in its shielding properties, which makes it promising for use as a prospective material for radiation shielding applications.

3.
Plant Cell ; 35(1): 453-468, 2023 01 02.
Article En | MEDLINE | ID: mdl-36190337

RAC/Rho of plant (ROP) GTPases are major molecular switches that control diverse signaling cascades for plant growth, development, and defense. Here, we discovered a signaling node that connects RAC/ROPs to cytokinins. Rice (Oryza sativa) plants develop a fibrous root system mainly composed of crown roots. Cytokinin signaling via a phosphorelay system is critical for crown root development. We show that OsRopGEF10, which activates RAC/ROPs, acts upstream of the cytoplasmic-nuclear shuttling phosphotransfer proteins AHPs of the cytokinin signaling pathway to promote crown root development. Mutations of OsRopGEF10 induced hypersensitivity to cytokinin, whereas overexpressing this gene reduced the cytokinin response. Loss of OsRopGEF10 function reduced the expression of the response regulator gene OsRR6, a repressor of cytokinin signaling, and impaired crown root development. Mutations in OsAHP1/2 led to increased crown root production and rescued the crown root defect of Osropgef10. Furthermore, auxin activates the ROP GTPase OsRAC3, which attenuates cytokinin signaling for crown root initiation. Molecular interactions between OsRopGEF10, OsRAC3, and OsAHP1/2 implicate a mechanism whereby OsRopGEF10-activated OsRAC3 recruits OsAHP1/2 to the cortical cytoplasm, sequestering them from their phosphorelay function in the nucleus. Together, our findings uncover the OsRopGEF10-OsRAC3-OsAHP1/2 signaling module, establish a link between RAC/ROPs and cytokinin, and reveal molecular crosstalk between auxin and cytokinin during crown root development.


Oryza , Oryza/metabolism , GTP Phosphohydrolase Activators/metabolism , rho GTP-Binding Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Signal Transduction , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant
4.
Nanomaterials (Basel) ; 12(14)2022 Jul 12.
Article En | MEDLINE | ID: mdl-35889606

The results of studies on the wettability properties and preparation of porous anodic alumina (PAA) membranes with a 3.3 ± 0.2 µm thickness and a variety of pore sizes are presented in this article. The wettability feature results, as well as the fabrication processing characteristics and morphology, are presented. The microstructure effect of these surfaces on wettability properties is analyzed in comparison to outer PAA surfaces. The interfacial contact angle was measured for amorphous PAA membranes as-fabricated and after a modification technique (pore widening), with pore sizes ranging from 20 to 130 nm. Different surface morphologies of such alumina can be obtained by adjusting synthesis conditions, which allows the surface properties to change from hydrophilic (contact angle is approximately 13°) to hydrophobic (contact angle is 100°). This research could propose a new method for designing functional surfaces with tunable wettability. The potential applications of ordinary alumina as multifunctional films are demonstrated.

5.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Article En | MEDLINE | ID: mdl-35630865

The W-Cu composites with nanosized grain boundaries and high effective density were fabricated using a new fast isostatic hot pressing method. A significantly faster method was proposed for the formation of W-Cu composites in comparison to the traditional ones. The influence of both the high temperature and pressure conditions on the microstructure, structure, chemical composition, and density values were observed. It has been shown that W-Cu samples have a polycrystalline well-packed microstructure. The copper performs the function of a matrix that surrounds the tungsten grains. The W-Cu composites have mixed bcc-W (sp. gr. Im 3¯ m) and fcc-Cu (sp. gr. Fm 3¯ m) phases. The W crystallite sizes vary from 107 to 175 nm depending on the sintering conditions. The optimal sintering regimes of the W-Cu composites with the highest density value of 16.37 g/cm3 were determined. Tungsten-copper composites with thicknesses of 0.06-0.27 cm have been fabricated for the radiation protection efficiency investigation against gamma rays. It has been shown that W-Cu samples have a high shielding efficiency from gamma radiation in the 0.276-1.25 MeV range of energies, which makes them excellent candidates as materials for radiation protection.

6.
Nanomaterials (Basel) ; 12(8)2022 Apr 14.
Article En | MEDLINE | ID: mdl-35458052

The paper discusses the formation of Ta2O5 pillars with Ni tips during thin porous anodic alumina through-mask anodization on Si/SiO2 substrates. The tantalum nanopillars were formed through porous masks in electrolytes of phosphoric and oxalic acid. The Ni tips on the Ta2O5 pillars were formed via vacuum evaporation through the porous mask. The morphology, structure, and magnetic properties at 4.2 and 300 K of the Ta2O5 nanopillars with Ni tips have been studied using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The main mechanism of the formation of the Ta2O5 pillars during through-mask anodization was revealed. The superparamagnetic behavior of the magnetic hysteresis loop of the Ta2O5 nanopillars with Ni tips was observed. Such nanostructures can be used to develop novel functional nanomaterials for magnetic, electronic, biomedical, and optical nano-scale devices.

7.
Materials (Basel) ; 14(17)2021 Aug 24.
Article En | MEDLINE | ID: mdl-34500865

The role La2O3 on the radiation shielding properties of La2O3-CaO-B2O3-SiO2 glass systems was investigated. The energies were selected between 0.284 and 1.275 MeV and Phy-X software was used for the calculations. BLa10 glass had the least linear attenuation coefficient (LAC) at all the tested energies, while BLa30 had the greatest, which indicated that increasing the content of La2O3 in the BLa-X glasses enhances the shielding performance of these glasses. The mass attenuation coefficient (MAC) of BLa15 decreases from 0.150 cm2/g to 0.054 cm2/g at energies of 0.284 MeV and 1.275 MeV, respectively, while the MAC of BLa25 decreases from 0.164 cm2/g to 0.053 cm2/g for the same energies, respectively. At all energies, the effective atomic number (Zeff) values follow the trend BLa10 < BLa15 < BLa20 < BLa25 < BLa30. The half value thickness (HVL) of the BLa-X glass shields were also investigated. The minimum HVL values are found at 0.284 MeV. The HVL results demonstrated that BLa30 is the most space-efficient shield. The tenth value layer (TVL) results demonstrated that the glasses are more effective attenuators at lower energies, while decreasing in ability at greater energies. These mean free path results proved that increasing the density of the glasses, by increasing the amount of La2O3 content, lowers MFP, and increases attenuation, which means that BLa30, the glass with the greatest density, absorbs the most amount of radiation.

8.
Nanomaterials (Basel) ; 11(7)2021 Jul 08.
Article En | MEDLINE | ID: mdl-34361161

High-quality and compact arrays of Ni nanowires with a high ratio (up to 700) were obtained by DC electrochemical deposition into porous anodic alumina membranes with a distance between pores equal to 105 nm. The nanowire arrays were examined using scanning electron microscopy, X-ray diffraction analysis and vibration magnetometry at 300 K and 4.2 K. Microscopic and X-ray diffraction results showed that Ni nanowires are homogeneous, with smooth walls and mostly single-crystalline materials with a 220-oriented growth direction. The magnetic properties of the samples (coercivity and squareness) depend more on the length of the nanowires and the packing factor (the volume fraction of the nanowires in the membrane). It is shown that the dipolar interaction changes the demagnetizing field during a reversal magnetization of the Ni nanowires, and the general effective field of magnetostatic uniaxial shape anisotropy. The effect of magnetostatic interaction between ultra-long nanowires (with an aspect ratio of >500) in samples with a packing factor of ≥37% leads to a reversal magnetization state, in which a "curling"-type model of nanowire behavior is realized.

9.
Materials (Basel) ; 14(9)2021 Apr 27.
Article En | MEDLINE | ID: mdl-33925649

For both the B2O3-Bi2O3-CaO and B2O3-Bi2O3-SrO glass systems, γ-ray and neutron attenuation qualities were evaluated. Utilizing the Phy-X/PSD program, within the 0.015-15 MeV energy range, linear attenuation coefficients (µ) and mass attenuation coefficients (µ/ρ) were calculated, and the attained µ/ρ quantities match well with respective simulation results computed by MCNPX, Geant4, and Penelope codes. Instead of B2O3/CaO or B2O3/SrO, the Bi2O3 addition causes improved γ-ray shielding competence, i.e., rise in effective atomic number (Zeff) and a fall in half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). Exposure buildup factors (EBFs) and energy absorption buildup factors (EABFs) were derived using a geometric progression (G-P) fitting approach at 1-40 mfp penetration depths (PDs), within the 0.015-15 MeV range. Computed radiation protection efficiency (RPE) values confirm their excellent capacity for lower energy photons shielding. Comparably greater density (7.59 g/cm3), larger µ, µ/ρ, Zeff, equivalent atomic number (Zeq), and RPE, with the lowest HVL, TVL, MFP, EBFs, and EABFs derived for 30B2O3-60Bi2O3-10SrO (mol%) glass suggest it as an excellent γ-ray attenuator. Additionally, 30B2O3-60Bi2O3-10SrO (mol%) glass holds a commensurably bigger macroscopic removal cross-section for fast neutrons (ΣR) (=0.1199 cm-1), obtained by applying Phy-X/PSD for fast neutrons shielding, owing to the presence of larger wt% of 'Bi' (80.6813 wt%) and moderate 'B' (2.0869 wt%) elements in it. 70B2O3-5Bi2O3-25CaO (mol%) sample (B: 17.5887 wt%, Bi: 24.2855 wt%, Ca: 11.6436 wt%, and O: 46.4821 wt%) shows high potentiality for thermal or slow neutrons and intermediate energy neutrons capture or absorption due to comprised high wt% of 'B' element in it.

10.
Nanomaterials (Basel) ; 10(6)2020 Jun 27.
Article En | MEDLINE | ID: mdl-32605084

Bi nanocrystalline films were formed from perchlorate electrolyte (PE) on Cu substrate via electrochemical deposition with different duration and current densities. The microstructural, morphological properties, and elemental composition were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray microanalysis (EDX). The optimal range of current densities for Bi electrodeposition in PE using polarization measurements was demonstrated. For the first time, it was shown and explained why, with a deposition duration of 1 s, co-deposition of Pb and Bi occurs. The correlation between synthesis conditions and chemical composition and microstructure for Bi films was discussed. The analysis of the microstructure evolution revealed the changing mechanism of the films' growth from pillar-like (for Pb-rich phase) to layered granular form (for Bi) with deposition duration rising. This abnormal behavior is explained by the appearance of a strong Bi growth texture and coalescence effects. The investigations of porosity showed that Bi films have a closely-packed microstructure. The main stages and the growth mechanism of Bi films in the galvanostatic regime in PE with a deposition duration of 1-30 s are proposed.

11.
Nanomaterials (Basel) ; 10(1)2020 Jan 19.
Article En | MEDLINE | ID: mdl-31963901

Inorganic-based nanoelements such as nanoparticles (nanodots), nanopillars and nanowires, which have at least one dimension of 100 nm or less, have been extensively developed for biomedical applications. Furthermore, their properties can be varied by controlling such parameters as element shape, size, surface functionalization, and mutual interactions. In this study, Ni-alumina nanocomposite material was synthesized by the dc-Ni electrodeposition into a porous anodic alumina template (PAAT). The structural, morphological, and corrosion properties were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical techniques (linear sweep voltammetry). Template technology was used to obtain Ni nanopillars (NiNPs) in the PAAT nanocomposite. Low corrosion current densities (order of 0.5 µA/cm2) were indicators of this nanocomposite adequate corrosion resistance in artificial physiological solution (0.9% NaCl). A porous anodic alumina template is barely exposed to corrosion and performs protective functions in the composite. The results may be useful for the development of new nanocomposite materials technologies for a variety of biomedical applications including catalysis and nanoelectrodes for sensing and fuel cells. They are also applicable for various therapeutic purposes including targeting, diagnosis, magnetic hyperthermia, and drug delivery. Therefore, it is an ambitious task to research the corrosion resistance of these magnetic nanostructures in simulated body fluid.

12.
J Hazard Mater ; 344: 602-614, 2018 Feb 15.
Article En | MEDLINE | ID: mdl-29112919

A novel, unconventional, low cost, eco-friendly and effective shielding materials have been made utilizing the hot dip galvanizing slag using the heat waste from itself, thereby saving the natural resources and preventing the environmental pollution. SEM-EDS of shielding materials indicates that the other elements are distributed in Zn element. The mass attenuation properties of shielding materials were measured using a narrow beam geometrical setup at 0.662MeV, 1.17MeV and 1.33MeV. The half value thickness layer, effective atomic number, and electron density were used to analyze the shielding performance of the materials. The EBFs and EABFs for the prepared shielding materials were also studied with incident photon energy for penetration depths upto 40mfp. The shielding effectiveness has been compared with lead, iron, zinc, some standard shielding concretes, different glasses and some alloys. The shielding effectiveness of the prepared samples is almost found comparable to iron, zinc, selected alloys and glasses while better than some standard shielding concretes. In addition, it is also found that the bending strength of all shielding materials is more than 110MPa.

13.
J Hazard Mater ; 336: 8-20, 2017 Aug 15.
Article En | MEDLINE | ID: mdl-28463736

A novel treatment for chromium, vanadium and ammonium from vanadium industrial wastewater using a byproduct of magnesium-based wet flue gas desulfurization is investigated. In the present study, the byproduct is used as a reductant for chromium and vanadium removal by chemical precipitation, and the residual magnesium ion can also be used to remove ammonium in the present of phosphate by struvite crystallization. Besides, the effects of main operational parameters (reaction pH, byproduct dosage and reaction time) on the heavy metal removal and ammonium removal (reaction pH, Mg2+:NH4+:PO43- molar ratio and reaction time) are investigated, and the reaction mechanism for this treatment technology is also proposed. Under the optimal conditions, the residual concentrations of chromium(IV), total chromium and vanadium are 0.046mg/L, 0.468mg/L and 0.06mg/L, respectively. The removal efficiency of ammonium is 95.72% and the residual concentrations of ammonium and phosphorus are 137.12mg/L and 5.49mg/L, respectively. Additionally, the precipitations are characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and thermogravimetry differential scanning calorimetry (TG-DSC), respectively. Finally, a resource utilization method of the precipitation sludge from this technology is also presented.

14.
J Hazard Mater ; 318: 751-757, 2016 Nov 15.
Article En | MEDLINE | ID: mdl-27343141

New exploration of vanadium slag as gamma ray shielding material was proposed, the shielding properties of vanadium slag was higher than concrete when the energy of photons was in 0.0001MeV-100000MeV. Vanadium slag/epoxy resin composites were prepared, shielding and material properties of materials were tested by (60)Co gamma ray, simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy, respectively. The results showed that the shielding properties of composite would be better with the increase of vanadium slag addition amount. The HVL (half value layer thickness) of vanadium slag was between Lead and concrete while composite was higher than concrete when the addition amount of vanadium slag was 900 used as material to shield (60)Co gamma ray, also the resistance temperature of composite was about 215°C and the bending strength was over 10MPa. The composites could be used as injecting mortar for cracks developed in biological concrete shields, coating for the floor of the nuclear facilities, and shielding materials by itself.

...