Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 312-314, 2024 May 30.
Article Zh | MEDLINE | ID: mdl-38863099

Objective: To select high-quality and cost-effective dural (spinal) membrane repair materials, in order to reduce the cost of consumables procurement, save medical insurance funds, and optimize hospital operation and management. Methods: Taking the BS06B disease group (spinal cord and spinal canal surgery without extremely severe or severe complications and comorbidities, mainly diagnosed as congenital tethered cord syndrome) as an example, a retrospective analysis was conducted on the relevant data of surgical treatment for congenital tethered cord syndrome conducted in our hospital from January 2021 to June 2023. Safety and efficacy indicators in clinical application (incidence of postoperative epidural hemorrhage, incidence of postoperative purulent cerebrospinal meningitis, incidence of cerebrospinal fluid leakage, surgical duration, and postoperative hospital stay) were compared. Results: There was no difference in safety and effectiveness between different brands of dura mater repair materials. Conclusion: For the repair of small incisions in dura mater surgery, high-quality and cost-effective dura mater repair materials can be selected to reduce hospital costs and control expenses for the disease group.


Dura Mater , Dura Mater/surgery , Retrospective Studies , Humans , Neural Tube Defects/surgery , Spinal Cord/surgery
2.
Plants (Basel) ; 13(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38794491

MADS-box transcription factors act as the crucial regulators in plant organ differentiation. Crop yields are highly influenced by the flower number and fruit growth. However, flower identification is a very complex biological process, which involves many cascade regulations. The molecular mechanisms underlying the genetic regulation of flower identification in cultivated plants, such as tomato, are intricate and require further exploration. In this study, we investigated the vital function of a SEPALLATA (SEP) MADS-box gene, SlMBP21, in tomato sympodial inflorescence meristem (SIM) development for the conversion from SIMs to floral meristems (FMs). SlMBP21 transcripts were primarily accumulated in young inflorescence meristem, flowers, sepals, and abscission zones. The Ailsa Craig (AC++) tomato plants with suppressed SlMBP21 mRNA levels using RNAi exhibited a large increase in flower number and fruit yields in addition to enlarged sepals and inhibited abscission zone development. Scanning electron microscopy (SEM) revealed that the maturation of inflorescence meristems (IMs) was repressed in SlMBP21-RNAi lines. RNA-seq and qRT-PCR analyses showed that numerous genes related to the flower development, plant hormone signal transduction, cell cycle, and cell proliferation et al. were dramatically changed in SlMBP21-RNAi lines. Yeast two-hybrid assay exhibited that SlMBP21 can respectively interact with SlCMB1, SFT, JOINTLESS, and MC, which play key roles in inflorescence meristems or FM development. In summary, our data demonstrate that SlMBP21 functions as a key regulator in SIM development and the conversion from SIMs to FMs, through interacting with other regulatory proteins to control the expression of related genes.

3.
Front Psychol ; 15: 1361632, 2024.
Article En | MEDLINE | ID: mdl-38711753

Objective: To investigate the changes in sleep conditions, anxiety, and depression levels among college students before and after entering the university. Methods: Utilizing a random sampling method, 692 new students from a college in Shandong province were selected in September 2019, and relevant indices were statistically analyzed in September 2021 following a comprehensive follow-up. Sleep status, anxiety, and depression levels were assessed using the Pittsburgh Sleep Quality Index (PSQI), Patient Health Questionnaire-9 (PHQ-9), and Generalized Anxiety Disorder-7 (GAD-7), respectively. Results: Gender, passive smoking, exercise, intake of fruits, and intake of seafood were identified as significant influencing factors on college students' sleep status, anxiety, and depression levels (p < 0.05). A substantial difference was observed in the sleep quality of college students between the early enrollment stage and the follow-up stage (p < 0.05). Moreover, a significant positive correlation was found between PSQI scores and the levels of anxiety and depression (p < 0.05), cumulatively explaining approximately 10% of the variance in anxiety and depression levels. Conclusion: The sleep quality of college students exhibited significant improvement after enrollment compared to the early enrollment period. Engaging in appropriate exercise and consuming fruits and seafood demonstrated a positive impact on sleep conditions, anxiety, and depression levels. These findings underscore the importance of fostering healthy lifestyle habits for promoting overall well-being among college students.

4.
J Hazard Mater ; 471: 134422, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38677118

Electron transfer pathways have been verified as overriding regimes when peroxydisulfate (PDS) was activated by porous carbon. The incorporation of graphitic structure into carbon matrix was favorable to the rapid electron transfer, but excessive graphitization would deteriorate the specific surface area (SSA), weakening the catalytic performance. The reasonable trade-off between SSA and graphitization degree was necessary and challenging for the preparation of efficient carbon based PS-activators. Herein, a series of graphitic porous carbon with discrepant SSA and graphitic structure were fabricated. The incorporation of graphitization tracks into ultra-thin edges on porous carbon film was verified by multifarious structural characterization. After trade-off, the optimum catalyst exhibited superior catalytic performance with degradation rate constant (kobs) exceeding that of ungraphitized precursor by up to 16.0 times. Mechanistic investigations substantiated that the sufficient SSA of catalyst provided favorable conditions for its affinity towards PDS and sulfadiazine (SDZ), resulting in the formation of PDS* complexes and SDZ adsorption, while the appropriate graphitization degree ensured the reinforced electron transfer rate, which collectively accelerated SDZ oxidation through electron-transfer pathway. The multivariate linear regression model linking kobs to SSA and graphitization degree was established providing basis to construct efficient catalysts for PDS activation.

5.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article En | MEDLINE | ID: mdl-38473738

MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.


MADS Domain Proteins , Solanum lycopersicum , MADS Domain Proteins/genetics , Flowers/genetics , Phylogeny , Plant Proteins/genetics , Transcription Factors/metabolism
6.
BMC Plant Biol ; 24(1): 193, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38493089

Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.


Ipomoea batatas , Stress, Physiological , Stress, Physiological/genetics , Cold-Shock Response/genetics , Ipomoea batatas/metabolism , RNA-Seq , Sodium Chloride/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Gene Expression Regulation, Plant , Phylogeny
7.
Opt Express ; 32(4): 6366-6381, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38439341

For the discrete spectrum nonlinear frequency division multiplexing (DS-NFDM) 16/64 amplitude phase shift keying (APSK) system, the inevitable laser impairments including frequency offset (FO) and carrier phase noise (CPN) would cause different rotations of the received signal constellations. In addition, the combined effect of FO and amplifier spontaneous emission (ASE) noise induces the eigenvalue shift, accordingly the residual channel impairment (RCI) is inevitably yielded. To address the above problems, we deduce the joint impairment model of FO, CPN and RCI, and then propose a joint equalization scheme using two-stage cascaded extended Kalman filter (TSC-EKF) for these impairments. It performs frequency offset compensation in the first stage, subsequently carries out joint equalization of CPN and RCI in the second stage. Meanwhile, the minimum Euclidean distance and phase difference between the received symbols and the ideal 16/64APSK constellations are ingeniously fused to calculate the innovations of TSC-EKF. The effectiveness has been verified by 2 GBaud DS-NFDM 16/64 APSK simulations and DS-NFDM 16APSK transmission experiments. The results demonstrate that when performing the joint equalization of FO, CPN and RCI, the maximum FOE range of TSC-EKF scheme achieves 1.2 and 9.6 times as that of nonlinear frequency domain (NFD) scheme and fast Fourier transform -Like (FFT-Like) scheme, respectively. Furthermore, its maximum LW tolerance reaches 3.3 times as that of the M-th power scheme. Importantly, the complexity of TSC-EKF is 63.4% as that of NFD scheme and on an order of O(N).

8.
BMC Plant Biol ; 24(1): 156, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38424529

BACKGROUND: bHLH transcription factors play significant roles in regulating plant growth and development, stress response, and anthocyanin biosynthesis. Sweetpotato is a pivotal food and industry crop, but little information is available on sweetpotato bHLH genes. RESULTS: Herein, 227 putative IbbHLH genes were defined on sweetpotato chromosomes, and fragment duplications were identified as the dominant driving force for IbbHLH expansion. These IbbHLHs were divided into 26 subfamilies through phylogenetic analysis, as supported by further analysis of exon-intron structure and conserved motif composition. The syntenic analysis between IbbHLHs and their orthologs from other plants depicted evolutionary relationships of IbbHLHs. Based on the transcriptome data under salt stress, the expression of 12 IbbHLHs was screened for validation by qRT-PCR, and differential and significant transcriptions under abiotic stress were detected. Moreover, IbbHLH123 and IbbHLH215, which were remarkably upregulated by stress treatments, had obvious transactivation activity in yeasts. Protein interaction detections and yeast two-hybrid assays suggested an intricate interaction correlation between IbbHLHs. Besides, transcriptome screening revealed that multiple IbbHLHs may be closely related to anthocyanin biosynthesis based on the phenotype (purple vs. white tissues), which was confirmed by subsequent qRT-PCR analysis. CONCLUSIONS: These results shed light on the promising functions of sweetpotato IbbHLHs in abiotic stress response and anthocyanin biosynthesis.


Anthocyanins , Basic Helix-Loop-Helix Transcription Factors , Anthocyanins/metabolism , Phylogeny , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Stress, Physiological/genetics , Transcriptome , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Adv Sci (Weinh) ; 11(12): e2305682, 2024 Mar.
Article En | MEDLINE | ID: mdl-38225752

There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.


Gelatin , Hearing Loss, Noise-Induced , Methacrylates , Mice , Animals , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/prevention & control , Niacinamide/therapeutic use , NAD , Delayed-Action Preparations/therapeutic use , Porosity , X-Ray Microtomography
10.
Plant Methods ; 20(1): 6, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38212839

Water dropwort (Oenanthe javanica (Blume) DC), an aquatic perennial plant from the Apiaceae family, rich in dietary fibert, vitamins, and minerals. It usually grows in wet soils and water. Despite accumulating the transcriptomic data, gene function research on water dropwort is still far behind than that of the other crops. The cucumber mosaic virus (CMV) induced gene silencing was established to study the functions of gene and microRNA (miRNA) in the water dropwort. CMV Fast New York strain (CMV-Fny) genomic RNAs 1, 2, and 3 were individually cloned into pCB301 vectors. We deleted part of the ORF 2b region and introduced recognition sites. A CMV-induced gene silencing vector was employed to suppress the expression of endogenous genes, including phytoene desaturase (PDS). In order to assess the efficacy of gene silencing, we also cloned conserved sequence of gibberellin insensitive dwarf (GID1) cDNA sequences into the vector and inoculated the water dropwort. The height of CMV-GID1-infected plants was marginally reduced as a result of GID1 gene silencing, and their leaves were noticeably longer and thinner. Additionally, we also used a CMV-induced silencing vector to analyze the roles of endogenous miRNAs. We used a short tandem target mimic approach to clone miR319 and miR396 from water dropwort into the CMV vector. Plants with CMV-miRNA infection were driven to exhibit the distinctive phenotypes. We anticipate that functional genomic research on water dropwort will be facilitated by the CMV-induced gene silencing technique.

11.
Opt Lett ; 48(21): 5707-5710, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37910739

We propose an amplified spontaneous emission (ASE) noise mitigation scheme utilizing digital frequency offset loading (DFO-loading) for discrete spectrum nonlinear frequency division multiplexing (DS-NFDM) systems. Firstly, based on the one-to-one mapping relationship between frequency offsets and eigenvalue positions, the transmitter side encodes 4-bit information onto 16 kinds of different digital frequency offsets. Then, a sliding window-assisted eigenvalue position (SWA-EP) decoding technology is further proposed to substitute the classical channel equalization and carrier phase recovery processes, with the purpose of recovering the original information. The numerical and experimental results demonstrate that, compared with b-coefficient 16 quadrature amplitude modulation (QAM) scheme, Q-factor gains are 2.1 dB under 15 dB optical signal-to-noise ratio (OSNR) and 1.8 dB after 800 km fiber transmission, respectively. Moreover, its complexity is only 0.6% of the b-coefficient scheme. The DFO-loading scheme offers an effective and low-complexity way to mitigate ASE noise of DS-NFDM system.

12.
Photodiagnosis Photodyn Ther ; 44: 103857, 2023 Dec.
Article En | MEDLINE | ID: mdl-37890810

BACKGROUND: Pseudomonas aeruginosa is a gram-negative bacterium without spores, and it is one of the pathogens that easily cause secondary infectious diseases when human immune function is low. The purpose of this study is to explore the inhibitory effect of photodynamic antibacterial chemotherapy-induced by cationic porphyrin derivative on clinical P. aeruginosa and its mechanism. METHODS: The uptake of photosensitizer by P. aeruginosa and L929 cells was measured by an ultraviolet spectrophotometer. Effect of laser energy density on the bacterial activity of P. aeruginosa and post antibiotic effect were measured by bacterial suspension and tenfold dilution method. Flow cytometry and scanning electron microscopy were used to observe the activity and morphological changes of P. aeruginosa after PACT treatment. RESULTS: The uptake of Tetra-ATPP-Lys-by P. aeruginosa and L929 was shown as concentration-dependent and time-dependent. However the uptake of L929 cell had a clear difference with P. aeruginosa at the same time and concentration intervals(P < 0.05).The increasing laser energy density had a high inactivation effect of on P. aeruginosa at the same Tetra-ATPP-Lys-concentration(P < 0.05). Post-antibiotic effect of Tetra-ATPP-Lys -PACT was dose-dependent(P < 0.05). Bacterial viability which evaluated by the flow cytometry method demonstrated that the proportion of viable bacteria is decreased with the photosensitizer dose-dependent. The morphology and microstructure of P. aeruginosa after Tetra-ATPP-Lys -PACT was demonstrated by a scanning electron microscope(SEM). After PACT, the morphology of P. aeruginosa was rod-shaped, the outer membrane surface was rough, and the bacteria were dry flat, sunken, shrunk and deformed. CONCLUSIONS: Cationic porphyrin photosensitizer had a great damage effect on P. aeruginosa under the PACT, which can effectively destroy the microstructure of bacteria and lead to bacterial inactivation and death.


Photochemotherapy , Porphyrins , Pseudomonas Infections , Humans , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Pseudomonas aeruginosa , Porphyrins/pharmacology , Porphyrins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria
13.
Huan Jing Ke Xue ; 44(9): 5214-5221, 2023 Sep 08.
Article Zh | MEDLINE | ID: mdl-37699839

Due to the wide sources of biomass raw materials and the lack of limits for the endogenous pollutants in biochar and their dosage, some biochar with high endogenous pollutants may be used for environmental remediation, which results in potential environmental risks. In this study, three biochars were prepared from the straws of Pennisetum sp. grown in clean, moderately polluted and highly polluted soils, respectively. The total endogenous copper (Cu) and cadmium (Cd), acid-soluble fraction, and persistent free radical (PFRs) distribution in biochars were investigated, and their biotoxicities were evaluated based on wheat root elongation inhibition rate and antioxidant enzyme activity. The results indicated that total Cu in Jiuniu biochar from the highly polluted soil and total Cd in Shuiquan biochar from the moderately-polluted soil were 3.73 and 4.43 times higher than that in Hongrang biochar from the clean soil, respectively. Moreover, acid-soluble Cu in Jiuniu biochar was 3.32 and 2.84 times higher than that in Shuiquan and Hongrang biochar, respectively, and acid-soluble Cd in Shuiquan and Jiuniu biochar was 7.95 and 5.11 times higher than that in Hongrang biochar, respectively. All three biochars had PFRs with adjacent oxygen atoms centered on carbon and followed the order of Hongrang>Jiuniu>Shuiquan. Three biochar leaching solutions significantly inhibited wheat root elongation but enhanced the enzyme activities of SOD, POD, and CAT for the wheat seedlings compared with that in the control. In particular, the highest inhibition rate (27.7%) was found in Jiuniu biochar. This study indicated that the interaction of endogenous heavy metals and PFRs in biochar exhibited significant biotoxicity to wheat seedlings. In the future, more attention should be paid to the potential environmental toxicity of endogenous pollutants from biochar to avoid new environmental pollution problems.


Environmental Pollutants , Pennisetum , Cadmium/toxicity , Environmental Pollution , Antioxidants , Seedlings
14.
Front Neurol ; 14: 1219590, 2023.
Article En | MEDLINE | ID: mdl-37533475

Traumatic or non-traumatic spinal cord injury (SCI) can lead to severe disability and complications. The incidence of SCI is high, and the rehabilitation cycle is long, which increases the economic burden on patients and the health care system. However, there is no practical method of SCI treatment. Recently, transcranial magnetic stimulation (TMS), a non-invasive brain stimulation technique, has been shown to induce changes in plasticity in specific areas of the brain by regulating the activity of neurons in the stimulation site and its functionally connected networks. TMS is a new potential method for the rehabilitation of SCI and its complications. In addition, TMS can detect the activity of neural circuits in the central nervous system and supplement the physiological evaluation of SCI severity. This review describes the pathophysiology of SCI as well as the basic principles and classification of TMS. We mainly focused on the latest research progress of TMS in the physiological evaluation of SCI as well as the treatment of motor dysfunction, neuropathic pain, spasticity, neurogenic bladder, respiratory dysfunction, and other complications. This review provides new ideas and future directions for SCI assessment and treatment.

15.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article En | MEDLINE | ID: mdl-37108695

Ascorbic acid (AsA) is an antioxidant with significant functions in both plants and animals. Despite its importance, there has been limited research on the molecular basis of AsA production in the fruits of Capsicum annuum L. In this study, we used Illumina transcriptome sequencing (RNA-seq) technology to explore the candidate genes involved in AsA biosynthesis in Capsicum annuum L. A total of 8272 differentially expressed genes (DEGs) were identified by the comparative transcriptome analysis. Weighted gene co-expression network analysis identified two co-expressed modules related to the AsA content (purple and light-cyan modules), and eight interested DEGs related to AsA biosynthesis were selected according to gene annotations in the purple and light-cyan modules. Moreover, we found that the gene GDP-L-galactose phosphorylase (GGP) was related to AsA content, and silencing GGP led to a reduction in the AsA content in fruit. These results demonstrated that GGP is an important gene controlling AsA biosynthesis in the fruit of Capsicum annuum L. In addition, we developed capsanthin/capsorubin synthase as the reporter gene for visual analysis of gene function in mature fruit, enabling us to accurately select silenced tissues and analyze the results of silencing. The findings of this study provide the theoretical basis for future research to elucidate AsA biosynthesis in Capsicum annuum L.


Capsicum , Glycogen Phosphorylase, Muscle Form , Ascorbic Acid/genetics , Fruit/genetics , Capsicum/genetics , Galactose , Phosphorylases , Gene Expression Regulation, Plant
16.
Front Endocrinol (Lausanne) ; 14: 1134318, 2023.
Article En | MEDLINE | ID: mdl-37008902

Objective: A large body of literature has demonstrated the significant efficacy of antibiotic bone cement in treating infected diabetic foot wounds, but there is less corresponding evidence-based medical evidence. Therefore, this article provides a meta-analysis of the effectiveness of antibiotic bone cement in treating infected diabetic foot wounds to provide a reference basis for clinical treatment. Methods: PubMed, Embase, Cochrane library, Scoup, China Knowledge Network (CNKI), Wanfang database, and the ClinicalTrials.gov were searched, and the search time was from the establishment of the database to October 2022, and two investigators independently. Two investigators independently screened eligible studies, evaluated the quality of the literature using the Cochrane Evaluation Manual, and performed statistical analysis of the data using RevMan 5.3 software. Results: A total of nine randomized controlled studies (n=532) were included and, compared with the control group, antibiotic bone cement treatment reduced the time to wound healing (MD=-7.30 95% CI [-10.38, -4.23]), length of hospital stay (MD=-6.32, 95% CI [-10.15, -2.48]), time to bacterial conversion of the wound (MD=-5.15, 95% CI [-7.15,-2.19]), and the number of procedures (MD=-2.35, 95% CI [-3.68, -1.02]). Conclusion: Antibiotic bone cement has significant advantages over traditional treatment of diabetic foot wound infection and is worthy of clinical promotion and application. Systematic review registration: PROSPERO identifier, CDR 362293.


Anti-Bacterial Agents , Bone Cements , Diabetic Foot , Wound Infection , Humans , Bone Cements/therapeutic use , Anti-Bacterial Agents/therapeutic use , Diabetic Foot/microbiology , Diabetic Foot/therapy , Diabetes Mellitus , Wound Healing
17.
Br J Pharmacol ; 180(19): 2532-2549, 2023 10.
Article En | MEDLINE | ID: mdl-37005797

BACKGROUND AND PURPOSE: Our previous research showed that ferroptosis plays a crucial role in the pathophysiology of PM2.5-induced lung injury. The present study aimed to investigate the protective role of the Nrf2 signalling pathway and its bioactive molecule tectoridin in PM2.5-induced lung injury by regulating ferroptosis. EXPERIMENTAL APPROACH: We examined the regulatory effect of Nrf2 on ferroptosis in PM2.5-induced lung injury and Beas-2b cells using Nrf2-knockout (KO) mice and Nrf2 siRNA transfection. The effects and underlying mechanisms of tectoridin on PM2.5-induced lung injury were evaluated in vitro and in vivo. KEY RESULTS: Nrf2 deletion increased iron accumulation and ferroptosis-related protein expression in vivo and vitro, further exacerbating lung injury and cell death in response to PM2.5 exposure. Tectoridin activated Nrf2 target genes and ameliorated cell death caused by PM2.5. In addition, tectoridin prevented lipid peroxidation, iron accumulation and ferroptosis in vitro, but in siNrf2-treated cells, these effects almost disappeared. In addition, tectoridin effectively mitigated PM2.5-induced respiratory system damage, as evaluated by HE, PAS, and inflammatory factors. Tectoridin also augmented the antioxidative Nrf2 signalling pathway and prevented changes in ferroptosis-related morphological and biochemical indicators, including MDA levels, GSH depletion and GPX4 and xCT downregulation, in PM2.5-induced lung injury. However, the effects of tectoridin on ferroptosis and respiratory injury were almost abolished in Nrf2-KO mice. CONCLUSION AND IMPLICATIONS: Our data proposed the protective effect of Nrf2 activation on PM2.5-induced lung injury by inhibiting ferroptosis-mediated lipid peroxidation and highlight the potential of tectoridin as a PM2.5-induced lung injury treatment.


Ferroptosis , Lung Injury , Animals , Mice , Lung Injury/chemically induced , Lung Injury/prevention & control , NF-E2-Related Factor 2 , Mice, Knockout , Particulate Matter/toxicity , Iron
18.
Technol Cancer Res Treat ; 22: 15330338231164883, 2023.
Article En | MEDLINE | ID: mdl-36991566

PURPOSE: Clinical target volumes (CTVs) and organs at risk (OARs) could be autocontoured to save workload. This study aimed to assess a convolutional neural network for automatic and accurate CTV and OARs in prostate cancer, while comparing possible treatment plans based on autocontouring CTV to clinical treatment plans. METHODS: Computer tomography (CT) scans of 217 patients with locally advanced prostate cancer treated at our hospital were retrospectively collected and analyzed from January 2013 to January 2019. A deep learning-based method, CUNet, was used to delineate CTV and OARs. A training set of 195 CT scans and a test set of 28 CT scans were randomly chosen from the dataset. The mean Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (95HD), and subjective evaluation were used to evaluate the performance of this strategy. Predetermined evaluation criteria were used to grade treatment plans, and percentage errors for clinical doses to the planned target volume (PTV) and OARs were calculated. RESULTS: The mean DSC and 95HD values of the defined CTVs were (0.84 ± 0.05) and (5.04 ± 2.15) mm, respectively. The average delineation time was < 15 s for each patient's CT scan. The overall positive rates for clinicians A and B were 53.15% versus 46.85%, and 54.05% versus 45.95%, respectively (P > .05) when CTV outlines from CUNet were blindly chosen and compared with the ground truth (GT). Furthermore, 8 test patients were randomly chosen to design the predicted plan based on the autocontouring CTVs and OARs, demonstrating acceptable agreement with the clinical plan: average absolute dose differences in mean value of D2, D50, D98, Dmax, and Dmean for PTV were within 0.74%, and average absolute volume differences in mean value of V45 and V50 for OARs were within 3.4%. CONCLUSION: Our results revealed that the CTVs and OARs for prostate cancer defined by CUNet were close to the GT. CUNet could halve the time spent by radiation oncologists in contouring, demonstrating the potential of the novel autocontouring method.


Prostatic Neoplasms , Radiotherapy Planning, Computer-Assisted , Male , Humans , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk , Neural Networks, Computer , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage
19.
Front Plant Sci ; 14: 1140727, 2023.
Article En | MEDLINE | ID: mdl-36895872

DNA-binding with one finger (Dof) transcription factors play a crucial role in plant abiotic stress regulatory networks, although massive Dofs have been systematically characterized in plants, they have not been identified in the hexaploid crop sweetpotato. Herein, 43 IbDof genes were detected to be disproportionally dispersed across 14 of the 15 chromosomes of sweetpotato, and segmental duplications were discovered to be the major driving force for the expansion of IbDofs. The collinearity analysis of IbDofs with their related orthologs from eight plants revealed the potential evolutionary history of Dof gene family. Phylogenetic analysis displayed that IbDof proteins were assigned into nine subfamilies, and the regularity of gene structures and conserved motifs was consistent with the subgroup classification. Additionally, five chosen IbDof genes were shown to be substantially and variably induced under various abiotic conditions (salt, drought, heat, and cold), as well as hormone treatments (ABA and SA), according to their transcriptome data and qRT-PCR experiments. Consistently, the promoters of IbDofs contained a number of cis-acting elements associated with hormone and stress responses. Besides, it was noted that IbDof2 had transactivation activity in yeasts, while IbDof-11/-16/-36 did not, and protein interaction network analysis and yeast two-hybrid experiments revealed a complicated interaction connection amongst IbDofs. Collectively, these data lay a foundation for further functional explorations of IbDof genes, especially with regards to the possible application of multiple IbDof members in breeding the tolerant plants.

20.
Nat Commun ; 14(1): 1657, 2023 03 24.
Article En | MEDLINE | ID: mdl-36964137

Stereocilia are actin-based cell protrusions of inner ear hair cells and are indispensable for mechanotransduction. Ankle links connect the ankle region of developing stereocilia, playing an essential role in stereocilia development. WHRN, PDZD7, ADGRV1 and USH2A have been identified to form the so-called ankle link complex (ALC); however, the detailed mechanism underlying the temporal emergence and degeneration of ankle links remains elusive. Here we show that WHRN and PDZD7 orchestrate ADGRV1 and USH2A to assemble the ALC through liquid-liquid phase separation (LLPS). Disruption of the ALC multivalency for LLPS largely abolishes the distribution of WHRN at the ankle region of stereocilia. Interestingly, high concentration of ADGRV1 inhibits LLPS, providing a potential mechanism for ALC disassembly. Moreover, certain deafness mutations of ALC genes weaken the multivalent interactions of ALC and impair LLPS. In conclusion, our study demonstrates that LLPS mediates ALC formation, providing essential clues for understanding the pathogenesis of deafness.


Hair Cells, Auditory , Usher Syndromes , Humans , Hair Cells, Auditory/metabolism , Ankle , Mechanotransduction, Cellular , Carrier Proteins/metabolism , Stereocilia/metabolism , Usher Syndromes/genetics , Hair/metabolism
...