Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 311, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676716

RESUMEN

As a kind of biosurfactants, iturin A has attracted people's wide attentions due to their features of biodegradability, environmentally friendly, etc.; however, high production cost limited its extensive application, and the aim of this research wants to improve iturin A production in Bacillus amyloliquefaciens. Firstly, dual promoter was applied to strengthen iturin A synthetase expression, and its yield was increased to 1.25 g/L. Subsequently, original 5'-UTRs of downstream genes (ituA, ituB, and ituC) in iturin A synthetase cluster were optimized, which significantly increased mRNA secondary stability, and iturin A yield produced by resultant strain HZ-T3 reached 2.32 g/L. Secondly, synthetic pathway of α-glucosidase inhibitor 1-deoxynojirimycin was blocked to improve substrate corn starch utilization, and iturin A yield was increased by 34.91% to 3.13 g/L. Thirdly, efficient precursor (fatty acids, Ser, and Pro) supplies were proven as the critical role in iturin A synthesis, and 5.52 g/L iturin A was attained by resultant strain, through overexpressing yngH, serC, and introducing ocD. Meanwhile, genes responsible for poly-γ-glutamic acid, extracellular polysaccharide, and surfactin syntheses were deleted, which led to a 30.98% increase of iturin A yield. Finally, lipopeptide transporters were screened, and iturin A yield was increased by 17.98% in SwrC overexpression strain, reached 8.53 g/L, which is the highest yield of iturin A ever reported. This study laid a foundation for industrial production and application development of iturin A, and provided the guidance of metabolic engineering breeding for efficient production of other metabolites synthesized by non-ribosomal peptide synthetase. KEY POINTS: • Optimizing 5'-UTR is an effective tactics to regulate synthetase cluster expression. • Blocking 1-DNJ synthesis benefited corn starch utilization and iturin A production. • The iturin A yield attained in this work was the highest yield reported so far.


Asunto(s)
Bacillus amyloliquefaciens , Ingeniería Metabólica , Tensoactivos , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Ingeniería Metabólica/métodos , Tensoactivos/metabolismo , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Regiones Promotoras Genéticas , Ligasas/genética , Ligasas/metabolismo
2.
Chem Sci ; 15(6): 2221-2228, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38332839

RESUMEN

Near-infrared (NIR) chromophores with analyte tunable emission and absorption properties are highly desirable for developing activatable fluorescence and photoacoustic (PA) probes for bioimaging and disease diagnosis. Here we engineer a class of new chromophores by extending the π-conjugation system of a xanthene scaffold at position 7 with different electron withdrawing groups. It is demonstrated that these chromophores exhibit pH-dependent transition from a spirocyclic "closed" form to a xanthene "open" form with remarkable changes in spectral properties. We further develop fluorescence and PA probes by caging the NIR xanthene chromophores with a dipeptidyl peptidase 4 (DPPIV) substrate. In vitro and live cell studies show that these probes allow activatable fluorescence and PA detection and imaging of DPPIV activity with high sensitivity, high specificity and fast response. Moreover, these two probes allow high-contrast and highly specific imaging of DPPIV activity in a tumour-bearing mouse model in vivo via systemic administration. This study highlights the potential of a xanthene scaffold as a versatile platform for developing high-contrast fluorescence and PA molecular probes.

3.
Chem Commun (Camb) ; 60(11): 1420-1423, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38204408

RESUMEN

Here we develop a near infrared (NIR) fluorogenic probe for carbon monoxide (CO) detection and imaging based on palladium-mediated carbonylation using a NIR boron-dipyrromethene difluoride as a fluorophore and tetraethylene glycols as aqueous moieties. The probe is utilized to image exogenous and endogenous CO under different stimulated conditions in live cells.


Asunto(s)
Compuestos de Boro , Monóxido de Carbono , Paladio , Colorantes Fluorescentes , Espectroscopía Infrarroja Corta
4.
Front Pharmacol ; 14: 1229772, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152693

RESUMEN

Background: The Chinese pharmacopeia records Terminalia chebula as effective in treating prolonged diarrhea and dysentery, blood in the stool, and prolapse. Modern pharmacological research proves it has multiple pharmacological benefits, including antioxidant, anti-inflammatory, analgesic, hepatoprotective, neuroprotective, and other properties. Objectives: This study aims to clarify the role of Terminalia chebula's ethyl acetate extract (TCEA) on ulcerative colitis (UC) induced by dextran sodium sulfate (DSS) in mice, as well as explore the potential mechanism of action. Materials and methods: The variation of different extracts of T. chebula was detected using the HPLC technique, and the main components in TCEA were identified. DSS was used to establish a mouse model to mimic the physiological state of UC in humans; the alleviating effect of TCEA and positive control 5-ASA on UC mice were evaluated by gavage treatment. Disease progression was assessed by monitoring the mouse's weight change and disease activity index (DAI). The changes in colon tissue were estimated by measuring colon length, HE, and AB-PAS staining and detecting oxidative stress parameters. The results draw from Western blot and real-time PCR showed the TLR4/MyD88/NF-κB pathway may involve in the anti-inflammatory activity of TCEA. Furthermore, the gut flora sequencing technique was employed to monitor the differentiation of intestinal microbiota of mice induced by DSS and TCEA treatment. Results: TCEA significantly lowered DAI scores and inhibited the weight loss and colonic shortening induced by DSS. The colon histomorphology and oxidative stress levels were enhanced after TCEA treatment compared with DSS induced UC group. TCEA attenuated the inflammatory response by regulating TLR4/MyD88/NF-κB pathway activation. Intestinal flora sequencing showed that DSS and TCEA greatly impacted mice's composition and diversity of intestinal microorganisms. But TCEA increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes and Proteobacteria compared with the DSS group, which contributed a lot to returning the intestinal flora to a balanced state. Conclusion: This study confirms the alleviating effect of TCEA on UC and provides new ideas for developing TCEA into a new drug to treat UC.

5.
Anal Chem ; 95(45): 16474-16480, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37903331

RESUMEN

Proteolysis targeting chimeras (PROTACs) have shifted the paradigm for drug development via target protein degradation. However, PROTACs may exhibit systemic toxicity to normal cells due to indiscriminate degradation and the utility of inhibitors as a warhead for protein targeting. Here, we propose a new strategy for developing activatable PROTACs for cell-specific degradation of histone deacetylase (HDAC) with minimal side effects via caging of the warhead. Molecular docking reveals that the hydroxyl group of the HDAC inhibitor is crucial for targeting. An enzyme-activatable PROTAC is designed by caging the hydroxyl group with the substrate for NAD(P)H: quinone oxidoreductase 1 (NQO1) overexpressed in cancer cells. We demonstrate that the caged PROTAC can be converted to its active form in response to NQO1. The enzyme-activatable PROTAC allows the efficient and specific degradation of HDAC6 and exerts antiproliferative activity in NQO1-positive cells. The generalizability of the design is further demonstrated by engineering a H2O2-responsive PROTAC for specific degradation of HDAC6 in cells with elevated H2O2. The strategy of caging the ligand for target proteins would afford a new dimension for developing activatable PROTACs with high specificity and minimal side effects.


Asunto(s)
Histona Desacetilasas , Quimera Dirigida a la Proteólisis , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Proteolisis , NAD
6.
Molecules ; 28(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570753

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory disease significantly impacting patients' lives. This study aimed to elucidate the alleviating effect of ethyl acetate extract (TBEA) from Terminalia bellirica fruit on UC and to explore its mechanism. TBEA was the fraction with the best anti-inflammatory activity screened using in vitro anti-inflammatory assays, and HPLC initially characterized its composition. The mice model of ulcerative colitis was established after free drinking of 2.5% dextran sulfate sodium for six days, and the experimental group was treated with 50 mg/kg and 100 mg/kg TBEA for seven days. We found that TBEA significantly alleviated symptoms in UC mice, including a physiologically significant reduction in disease activity index and pathological damage to colonic tissue. TBEA dramatically slowed down oxidative stress and inflammatory process in UC mice, as evidenced by decreasing myeloperoxidase and malondialdehyde activities and increasing glutathione and catalase levels by reducing the concentrations of IL-6, IL-1ß, TNF-α, and NO in UC mice, as well as by regulating key proteins in the IL-6/JAK2/STAT3 pathway. Meanwhile, TBEA maintained intestinal homeostasis by regulating intestinal flora structure. Our study provides new ideas for developing TBEA into a new drug to treat UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Terminalia , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Citocinas/metabolismo , Terminalia/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Frutas/metabolismo , Colon/metabolismo , Antiinflamatorios/uso terapéutico , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colitis/tratamiento farmacológico
7.
Molecules ; 28(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175119

RESUMEN

This research aimed to investigate natamycin's antifungal effect and its mechanism against the chestnut pathogen Neofusicoccum parvum. Natamycin's inhibitory effects on N. parvum were investigated using a drug-containing plate culture method and an in vivo assay in chestnuts and shell buckets. The antifungal mechanism of action of natamycin on N. parvum was investigated by conducting staining experiments of the fungal cell wall and cell membrane. Natamycin had a minimum inhibitory concentration (MIC) of 100 µg/mL and a minimum fungicidal concentration (MFC) of 200 µg/mL against N. parvum. At five times the MFC, natamycin had a strong antifungal effect on chestnuts in vivo, and it effectively reduced morbidity and extended the storage period. The cell membrane was the primary target of natamycin action against N. parvum. Natamycin inhibits ergosterol synthesis, disrupts cell membranes, and causes intracellular protein, nucleic acid, and other macromolecule leakages. Furthermore, natamycin can cause oxidative damage to the fungus, as evidenced by decreased superoxide dismutase and catalase enzyme activity. Natamycin exerts a strong antifungal effect on the pathogenic fungus N. parvum from chestnuts, mainly through the disruption of fungal cell membranes.


Asunto(s)
Ascomicetos , Natamicina , Natamicina/farmacología , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana
8.
Biotechnol Adv ; 63: 108098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36649797

RESUMEN

Activation and turning CO2 into value added products is a promising orientation to address environmental issues caused by CO2 emission. Currently, electrocatalysis has a potent well-established role for CO2 reduction with fast electron transfer rate; but it is challenged by the poor selectivity and low faradic efficiency. On the other side, biocatalysis, including enzymes and microbes, has been also employed for CO2 conversion to target Cn products with remarkably high selectivity; however, low solubility of CO2 in the liquid reaction phase seriously affects the catalytic efficiency. Therefore, a new synergistic role in bioelectrocatalysis for CO2 reduction is emerging thanks to its outstanding selectivity, high faradic efficiency, and desirable valuable Cn products under mild condition that are surveyed in this review. Herein, we comprehensively discuss the results already obtained for the integration craft of enzymatic-electrocatalysis and microbial-electrocatalysis technologies. In addition, the intrinsic nature of the combination is highly dependent on the electron transfer. Thus, both direct electron transfer and mediated electron transfer routes are modeled and concluded. We also explore the biocompatibility and synergistic effects of electrode materials, which emerge in combination with tuned enzymes and microbes to improve catalytic performance. The system by integrating solar energy driven photo-electrochemical technics with bio-catalysis is further discussed. We finally highlight the significant findings and perspectives that have provided strong foundations for the remarkable development of green and sustainable bioelectrocatalysis for CO2 reduction, and that offer a blueprint for Cn valuable products originate from CO2 under efficient and mild conditions.


Asunto(s)
Dióxido de Carbono , Técnicas Electroquímicas , Transporte de Electrón , Biocatálisis , Catálisis
9.
ACS Omega ; 6(22): 13946-13952, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34124419

RESUMEN

Synthesis of ultrathin metal-organic framework (MOF) nanosheets for highly efficient oxygen evolution reaction (OER) is prevalent, but still many challenges remain. Herein, a facile and efficient three-layer method is reported for the synthesis of NiCoFe-based trimetallic MOF nanosheets, which can be directly used for the oxygen evolution reaction in alkaline conditions. The physical characterization and morphology of trimetallic MOF nanosheets were characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). By optimizing the molar ratio of Ni/Co/Fe atoms, a series of MOFs with different metal proportions were synthesized. Among them, the as-prepared (Ni3Co1)3Fe1-MOF nanosheets can deliver a current density of 10 mA cm-2 at a low overpotential of 245 mV with a small Tafel slope of 50.9 mV dec-1 in an alkaline electrolyte and exhibit excellent stability. More importantly, through the characterization of the intermediates in the OER process, the possible source of the catalytic active species is the electrochemically transformed metal hydroxides and oxyhydroxides.

10.
Anal Chem ; 93(4): 2534-2540, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33461295

RESUMEN

MicroRNAs (miRNAs) play essential roles in regulating gene expression and cell fate. However, it remains a great challenge to image miRNAs with high accuracy in living cells. Here, we report a novel genetically encoded dual-color light-up RNA sensor for ratiometric imaging of miRNAs using Mango as an internal reference and SRB2 as the sensor module. This genetically encoded sensor is designed by expressing a splittable fusion of the internal reference and sensor module under a single promoter. This design strategy allows synchronous expression of the two modules with negligible interference. Live cell imaging studies reveal that the genetically encoded ratiometric RNA sensor responds specifically to mir-224. Moreover, the sensor-to-Mango fluorescence ratios are linearly correlated with the concentrations of mir-224, confirming their capability of determining mir-224 concentrations in living cells. Our genetically encoded light-up RNA sensor also enables ratiometric imaging of mir-224 in different cell lines. This strategy could provide a versatile approach for ratiometric imaging of intracellular RNAs, affording powerful tools for interrogating RNA functions and abundance in living cells.


Asunto(s)
Proteínas Luminiscentes/genética , MicroARNs/química , Imagen Óptica/métodos , ARN/química , Técnicas Biosensibles , Línea Celular , Ingeniería Genética/métodos , Humanos , Imagen Molecular/métodos
11.
Sci Total Environ ; 755(Pt 2): 143341, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33153748

RESUMEN

Inorganic arsenic (iAs) is a group 1 carcinogen, and consumption of rice can be a significant pathway of iAs exposure in the food chain. Although there are regulations in place to control iAs for marketed rice in some countries, additional measures are explored to remove arsenic from rice. Due to the surface-bound and soluble nature of iAs, previous studies have shown that it can be removed to a significant extent using different cooking methods. Towards this goal we modified and tested the absorption method in combination with four home-friendly cooking treatments (UA = unwashed and absorbed, WA = washed and absorbed, PSA = pre-soaked and absorbed, and PBA = parboiled and absorbed) using both brown and white rice (3 types each). The nutrient elements were measured using ICP-MS and arsenic speciation was carried out using LC-ICP-MS. Overall, our results show that PBA was the optimum approach assessed, removing 54% and 73% of inorganic arsenic (iAs) for brown and white rice respectively, raising the margin of exposure (MOE) by 3.7 for white rice and 2.2 times for brown rice, thus allowing the consumption of rice more safely for infants, children and adults. Other cooking treatments were effective in reducing the iAs concentration from white rice only. Here we also report changes in selected nutrient elements (P, K, Mg, Zn and Mn) which are relatively abundant in rice. In general, the treatments retained more nutrients in brown rice than white rice. No significant loss of Zn was observed from both rice types and the loss of other nutrients was similar or less than in comparison to reported losses from rice cooked in excess water in the literature. We conclude that PBA is a promising technique and further research is needed by including different regional rice types and water quality levels.


Asunto(s)
Arsénico , Oryza , Adulto , Arsénico/análisis , Niño , Culinaria , Contaminación de Alimentos/análisis , Humanos , Lactante , Nutrientes
12.
Bioorg Med Chem Lett ; 30(21): 127459, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32784087

RESUMEN

We report herein the synthesis of novel ring-fused pyrazoloamino pyridine/pyrimidine derivatives as potential FAK inhibitors and the evaluation of pharmaceutical activity against five cancer cell lines (MDA-MB-231, BXPC-3, NCI-H1975, DU145 and 786O). Generally, the majority of compounds displayed strong anti-FAK enzymatic potencies (IC50 < 1 nM) and could effectively inhibit several class of cancer cell lines within the concentration of 3 µM in comparison with GSK2256098 as a reference. Among them, compound 4o is considered to be the most effective due to high sensitivity in antiproliferation. In culture, 4o could not only inhibit FAK Y397 phosphorylation in MDA-MB-231 cell line, but also trigger apoptosis in a dose-dependent manner. Furthermore, computational docking analysis also suggested that 4o and TAE-226 displayed the similar interaction with FAK kinase domain.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piridinas/química , Pirimidinas/química , Relación Estructura-Actividad
13.
J Org Chem ; 82(18): 9497-9504, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28831800

RESUMEN

An effective and practical CuI-catalyzed methodology toward N-alkyl or N-methyl phosphonamides and phosphinamides was herein demonstrated. The transformation took place readily under the oxidative conditions, and plenty of N-alkylated (methylated) amides (30 examples) were successfully furnished in high efficiency (up to 92% yields). Dicumyl peroxide was considered to act either as the oxidant for the alkylation reaction or as methyl donator for the methylation protocol.

14.
J Org Chem ; 82(11): 5810-5818, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28508647

RESUMEN

A general and direct N-arylation of sulfonamides and NH-sulfoximines by sodium arylsulfinates through a desulfitative pathway was herein demonstrated. The reaction proceeded with catalytic loadings of Cu(II)-catalysts without any external ligands. And the novel arylation protocol featured for high efficiency (up to 93% yields) and good substituent tolerance (up to 53 examples). Moreover, a plausible reaction mechanism was also discussed.

15.
Org Lett ; 19(3): 726-729, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28107020

RESUMEN

Rhodium(III)-catalyzed ortho brominations and iodinations of N-acylsulfoximines by C-H bond activations have been developed. Subsequent product functionalizations involving cross-coupling reactions provide alkynylated sulfoximine derivatives and benzothiazines with wide potential for further synthetic applications.

16.
Chemistry ; 22(31): 10821-4, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27253672

RESUMEN

Rhodium-catalyzed ortho-amidations of sulfoximines lead to key intermediates for the preparation of thiadiazine 1-oxides. Following a straightforward protocol, a variety of synthetically valuable compounds can be obtained, thus circumventing common multistep approaches towards potentially bioactive products.

17.
Int Immunopharmacol ; 29(2): 354-360, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26525983

RESUMEN

Sinomenine is an isoquinoline-type alkaloid found in Sinomenium acutum (Thunb.) Rehd. et Wils and S. acutum (Thunb.) Rehd. et Wils var. cinereum Rehd. et Wils. When used as a medicine, this compound exhibits anti-inflammatory properties; however, sinomenine's use as a medication is limited by side effects, a short half-life, and low efficacy. Owing to these limits, attempts have been made to synthesize sinomenine derivatives with enhanced efficacy. In this study, the anti-inflammatory effects of novel sinomenine derivatives (S1a-S1f) were examined on the basis of lipopolysaccharide-induced inflammatory factor expression in Raw264.7 cells, dimethylbenzene-induced ear oedema, and Evan's blue leakage in mice, and carrageenan-induced paw oedema in rats. Compared with sinomenine, the derivatives significantly inhibited the expression of the inflammatory factors IL-1ß and IL-6 at the transcriptional and translational levels. Topical application of 3.250mg/kg of the derivatives also alleviated ear oedema. Compared with the vehicle, the derivatives significantly inhibited carrageenan-induced rat paw oedema after 6h. Among the derivatives, S1a exhibited the most potent anti-inflammatory activity. S1a also significantly increased the sinomenine-induced inhibition of Evan's blue leakage. Thus, S1a may elicit the strongest anti-inflammatory effects of the tested compounds. Based on these results, further development of this compound may be warranted.


Asunto(s)
Antiinflamatorios/farmacología , Morfinanos/farmacología , Animales , Permeabilidad Capilar/efectos de los fármacos , Carragenina , Colorantes , Edema/inducido químicamente , Edema/prevención & control , Azul de Evans , Pie/patología , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Interleucina-6/biosíntesis , Interleucina-6/genética , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Sinomenium/química , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Xilenos
18.
Chem Commun (Camb) ; 51(80): 14889-92, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26302682

RESUMEN

A novel protocol towards N-aroylated sulfoximines from NH-sulfoximines and methyl arenes was herein demonstrated. The reaction took place in the presence of elemental iodine, requiring no external organic solvents, transition metal-catalysts or ligands. The aroylated products were obtained from the oxidative transformation in moderate to excellent yields (up to 94% yield) with a broad substrate scope (35 examples) through a radical pathway.


Asunto(s)
Iminas/química , Elementos de Transición/química , Metales/química
19.
Chemistry ; 20(48): 15732-6, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25327999

RESUMEN

Rhodium-catalyzed directed CH-functionalizations have been used in hydroarylations of heterobicyclic alkenes with NH-sulfoximines. Unexpectedly, the bicyclic framework is retained, resulting in the formation of addition products being attractive intermediates for functionalized molecules that are difficult to prepare by other means.

20.
Org Lett ; 16(10): 2661-3, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24786106

RESUMEN

A high-yielding method providing rapid access to new N-arylated sulfoximines has been developed. A stoichiometric amount of copper facilitates the C-H activation of 2-arylpyridines which then undergo oxidative C-N cross-couplings with various sulfoximine derivatives.


Asunto(s)
Cobre/química , Piridinas/química , Compuestos de Azufre/química , Compuestos de Azufre/síntesis química , Catálisis , Estructura Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...