Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Water Res ; 267: 122452, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39303577

RESUMEN

Achieving low-cost advanced nitrogen (N) removal from municipal wastewater treatment plants (WWTPs) remains a challenge. A plug-flow anaerobic/oxic/anoxic (AOA) system with a mixtures bypass (MBP) integrating partial nitrification (PN), endogenous carbon denitrification (EnD), partial denitrification (PD), and anaerobic ammonium oxidation (Anammox), was constructed to treat actual sewage with a low C/N ratio. The effluent concentrations and removal efficiency of total inorganic nitrogen (TIN) during stable operation were 2.9 ± 0.9 mg/L and 93.1 ± 2.0 %, respectively. EnD was enhanced by the MBP through the efficient utilization of polyhydroxyalkanoates generated in the anaerobic zone. PD was promoted by the addition of carries and sodium acetate to the anoxic tank and the subsequent implantation of the Anammox biofilm successfully coupled PD/A. Stable PN was obtained with a satisfactory nitrite accumulation ratio of 92.6 %, facilitated by carriers and the introduction of hydroxylamine in the oxic zone. Mass balance analysis revealed that EnD and Anammox contributed 40.8 % and 48.2 % of TIN removal, respectively. The enrichment and synergistic effects of ammonia-oxidizing bacteria, denitrifying bacteria, glycogen-accumulating organisms, and anaerobic ammonia-oxidizing bacteria formed a diverses bacterial basis for the establishment of PN, EnD, PD, and Anammox (PNEnD/A) in the AOA system. The successful integration of PNEnD/A into the AOA process provides an innovative approach for low-cost advanced N removal in WWTPs.

2.
Plants (Basel) ; 13(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273988

RESUMEN

Returning straw to the field is a crucial practice for enhancing soil quality and increasing efficient use of secondary crop products. However, maize straw has a higher carbon-to-nitrogen ratio compared to other crops. This can result in crop nitrogen loss when the straw is returned to the field. Therefore, it is crucial to explore how different methods of straw return affect maize (Zea mays L.) farmland. In this study, a field experiment was performed with three treatments (I, no straw returned, CK; II, direct straw return, SR; and III, straw returned in deep furrows, ISR) to explore the effects of the different straw return modes on soil carbon and nitrogen content and greenhouse gas emissions. The results indicated that the SR and ISR treatments increased the dissolved organic carbon (DOC) content in the topsoil (0-15 cm). Additionally, the ISR treatment boosted the contents of total nitrogen (TN), nitrate nitrogen (NO3--N), ammonium nitrogen (NH4+-N), dissolved organic nitrogen (DON), and DOC in the subsurface soil (15-30 cm) compared with CK. When it comes to greenhouse gas emissions, the ISR treatment led to an increase in CO2 emissions. However, SR and ISR reduced N2O emissions, with ISR showing a more pronounced reduction. The ISR treatment significantly increased leaf and grain biomass compared to CK and SR. The correlation analyses showed that the yield was positively correlated with soil DOC, and soil greenhouse gas emission was correlated with soil NO3--N. The ISR technology has great potential in sequestering soil organic matter, improving soil fertility, and realizing sustainable agricultural development.

3.
Bioresour Technol ; 411: 131320, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173960

RESUMEN

This study investigated the rapid start-up of mainstream partial denitrification coupled with anammox (PD/A) and nitrogen removal performance by inoculating precultured PD/A biofilm. The results showed mainstream PD/A in the anaerobic-anoxic-aerobic (A2O) process was rapidly established within 30 days. Nitrogen removal efficiency (NRE) improved by 23.8 % contrasted to the traditional A2O process. The mass balance showed that anammox contribution to total nitrogen (TN) removal were maintained at 37.9 %∼55.7 %, and reducing hydraulic retention time (HRT) strengthened simultaneously denitrification and anammox activity. The microbial community showed that the dominant bacteria such as denitrifying bacteria (DNBs) and glycogen accumulating organisms (GAOs) both in biofilm and flocculent sludge (floc), integrating with anammox bacteria (AnAOB) in biofilm might lead to enhanced nitrogen removal. Overall, this study offered a fast start-up strategy of mainstream PD/A with enhanced nitrogen removal, which are valuable for upgradation and renovation of existed municipal wastewater treatment plants (WWTPs).


Asunto(s)
Biopelículas , Desnitrificación , Nitrógeno , Aguas del Alcantarillado , Nitrógeno/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Reactores Biológicos , Purificación del Agua/métodos , Anaerobiosis/fisiología , Eliminación de Residuos Líquidos/métodos , Oxidación-Reducción
4.
J Hazard Mater ; 478: 135539, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39180995

RESUMEN

Efficient degradation of haloacetic acids (HAAs) is crucial due to their potential risks. This study firstly proposed vacuum ultraviolet - activated peroxymonosulfate (VUV/PMS) to remove HAAs (i.e., monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), dichloroacetic acid (DCAA), etc). VUV/PMS achieved 99.51 % MCAA and 63.29 % TOC removal within 10 min. Electron paramagnetic resonance (EPR), quenching and probe experiments demonstrated that •OH was responsible for MCAA degradation. MCAA degradation followed pathways of dehalogenation (major) and decarboxylation (minor). VUV/PMS showed application potential under various reaction parameters. Broad spectrum of VUV/PMS on various HAAs was further explored. Chlorinated HAAs (Cl-HAAs) were primarily degraded by oxidation reactions, while brominated HAAs (Br-HAAs) by direct VUV photolysis. The density functional theory-based calculations (DFT) revealed that reaction rates of HAAs correlated with the highest occupied molecular orbital (HOMO) and energy gap (ΔE), indicating that HAAs degradation depends on their chemical structures. The Fukui function (f0 values) and bond length showed vulnerability of the halogen atom in Cl-HAAs and C-Br bond in Br-HAAs. Overall, this study provides an in-depth perspective on the oxidation performance and mechanism of HAAs using VUV/PMS. It not only demonstrates a green and efficient method but also inspires new strategies for HAAs remediation.

5.
Environ Pollut ; 361: 124849, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214442

RESUMEN

Grass-type architectural waterscapes (GAWs) utilize submerged plants to enhance self-purification ability and maintain a clear-water state. However, knowledge about their long-term water quality and microbial community dynamics remains limited. This study monitored the water quality, microbial community composition, and networks in two GAWs. GAW1 consisted solely Hydrilla verticillata with a water depth of 0.70 m, while GAW2 primarily contained Vallisneria natans, Microsorum pteropus, and Aquarius grisebachii with a water depth of 0.30 m. Results show that both water depth and submerged plant species play crucial roles in GAW establishment. The water depth of 0.7 m enabled Hydrilla verticillata to thrive underwater despite temperature variations, which demonstrated excellent nutrient uptake capacity. Thus, GAW1 exhibited superior self-purification ability, consistently meeting Class III standard for surface water in China. In contrast, GAW2 had a shallow water depth and contained ornamental plants, only meeting Class V standard. Furthermore, microbial communities were shaped by water quality, with distinct enriched genera serving as potential "microbial indicators". Enrichment of the hgcI clade and Sporichthyaceae_unclassified indicated superior water quality in GAW1, while prevalence of Comamonadaceae_unclassified, Flavobacterium, Rhodoluna, and Pseudarcicella suggested poor water quality in GAW2. Additionally, highly complex and connected microbial networks suggested elevated pollutant levels in GAWs. This study emphasized the significance of submerged plant species and water depth in GAWs construction and highlighted microbial communities and networks as potential indicators of water quality.

6.
J Hazard Mater ; 476: 135086, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39024762

RESUMEN

Membranes for wastewater treatment should ideally exhibit sustainable high permeate production, enhanced pollutant removal, and intrinsic physical rejection. In this study, CoFe2O4/MoS2 serves as a non-homogeneous phase catalyst; it is combined with polyether sulfone membranes via liquid-induced phase separation to simultaneously sustain membrane permeability and enhance antibiotic pollutant degradation. The prepared catalytic membranes have higher pure water flux (329.34 L m-2 h-1) than pristine polyethersulfone membranes (219.03 L m-2 h-1), as well as higher mean pore size, porosity, and hydrophilicity. Under a moderate transmembrane pressure (0.05 MPa), tetracycline (TC) in synthetic and real wastewater was degraded by the optimal catalytic membrane by 72.7 % and 91.2 %, respectively. Owing to the generation of the reactive oxygen species (ROS) during the Fenton-like reaction process, the catalytic membrane could exclude the natural organics during the H2O2 backwash step and selectively promote fouling degradation in the membrane channel. The irreversible fouling ratio of the catalyzed membrane was significantly reduced, and the flux recovery rate increased by up to 91.6 %. A potential catalytic mechanism and TC degradation pathways were proposed. This study offers valuable insights for designing catalytic membranes with enhanced filtration performance.


Asunto(s)
Antibacterianos , Disulfuros , Peróxido de Hidrógeno , Membranas Artificiales , Molibdeno , Permeabilidad , Contaminantes Químicos del Agua , Peróxido de Hidrógeno/química , Catálisis , Contaminantes Químicos del Agua/química , Antibacterianos/química , Disulfuros/química , Molibdeno/química , Sulfonas/química , Tetraciclina/química , Cobalto/química , Aguas Residuales/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Compuestos Férricos/química , Compuestos Ferrosos/química , Polímeros
7.
Environ Res ; 259: 119541, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960353

RESUMEN

Sequencing batch biofilm reactors (SBBR) were utilized to investigate the impact of Cu2+ on nitrogen (N) removal and microbial characteristics. The result indicated that the low concentration of Cu2+ (0.5 mg L-1) facilitated the removal of ammonia nitrogen (NH4+-N), total nitrogen (TN), nitrate nitrogen (NO3--N), and chemical oxygen demand (COD). In comparison to the average effluent concentration of the control group, the average effluent concentrations of NH4+-N, NO3--N, COD, and TN were found to decrease by 40.53%, 17.02%, 10.73%, and 15.86%, respectively. Conversely, the high concentration of Cu2+ (5 mg L-1) resulted in an increase of 94.27%, 55.47%, 22.22%, and 14.23% in the aforementioned parameters, compared to the control group. Low concentrations of Cu2+ increased the abundance of nitrifying bacteria (Rhodanobacter, unclassified-o-Sacharimonadales), denitrifying bacteria (Thermomonas, Comamonas), denitrification-associated genes (hao, nosZ, norC, nffA, nirB, nick, and nifD), and heavy-metal-resistant genes related to Cu2+ (pcoB, cutM, cutC, pcoA, copZ) to promote nitrification and denitrification. Conversely, high concentration Cu2+ hindered the interspecies relationship among denitrifying bacteria genera, nitrifying bacteria genera, and other genera, reducing denitrification and nitrification efficiency. Cu2+ involved in the N and tricarboxylic acid (TCA) cycles, as evidenced by changes in the abundance of key enzymes, such as (EC:1.7.99.1), (EC:1.7.2.4), and (EC:1.1.1.42), which initially increased and then decreased with varying concentrations of Cu2+. Conversely, the abundance of EC1.7.2.1, associated with the accumulation of nitrite nitrogen (NO2--N), gradually declined. These findings provided insights into the impact of Cu2+ on biological N removal.


Asunto(s)
Biopelículas , Reactores Biológicos , Cobre , Nitrógeno , Biopelículas/efectos de los fármacos , Cobre/toxicidad , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Desnitrificación , Bacterias/metabolismo , Bacterias/genética , Eliminación de Residuos Líquidos/métodos
8.
Bioresour Technol ; 406: 130947, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897548

RESUMEN

Intermittent hydroxylamine (NH2OH) dosing strategy was applied to enhance the stability of partial nitrification and total nitrogen (N) removal efficiency (TNRE) in a continuous-flow process. The results showed 2 mg/L of NH2OH dosing (once every 6 h) could maintain stably partial nitrification with nitrite accumulation rate (NAR) of 91.6 % and TNRE of 92.6 %. The typical cycle suggested NH2OH dosing could promote simultaneous nitrification-denitrification (SND) and endogenous denitrification (END) while inhibit exogenous denitrification (EXD). Nitrification characteristics indicated the NH2OH dosing enhanced stability of partial nitrification by suppressing specific nitrite oxidation rate (SNOR), Nitrospira and nitrite oxidoreductase enzyme (Nxr). The microbial community suggested the aerobic denitrfiers, denitrifying glycogen accumulating organisms (DGAOs) and traditional denitrfiers were the potential contributor for advanced N removal. Moreover, NH2OH dosage was positively associated with NAR, SND and END. Overall, this study offers a feasible strategy to maintain sustainably partial nitrification that has great application potential.


Asunto(s)
Reactores Biológicos , Desnitrificación , Hidroxilamina , Nitrificación , Nitrógeno , Aguas Residuales , Hidroxilamina/farmacología , Aguas Residuales/química , Aerobiosis , Anaerobiosis , Purificación del Agua/métodos , Nitritos/metabolismo , Eliminación de Residuos Líquidos/métodos
9.
Sci Total Environ ; 939: 173518, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38815824

RESUMEN

To investigate the effects of microplastics (MPs) on hydrolysis, acidification and microbial characteristics during waste activated sludge (WAS) anaerobic fermentation process, five different kinds of MPs were added into the WAS fermentation system and results indicated that, compared to the control group, the addition of polyvinyl chloride (PVC)-MPs exhibited the least inhibition on volatile fatty acids (VFAs), reducing them by 13.49 %. Conversely, polyethylene (PE)-MPs resulted in the greatest inhibition, with a reduction of 29.57 %. MPs, while accelerated the dissolution of WAS that evidenced by an increase of lactate dehydrogenase (LDH) release, concurrently inhibited the activities of relevant hydrolytic enzymes (α-Glucosidase, protease). For microbial mechanisms, MPs addition affected the proliferation of key microorganisms (norank_f_Bacteroidetes_vadinHA17, Ottowia, and Propioniclava) and reduced the abundance of genes associated with hydrolysis and acidification (pfkb, gpmI, ilvE, and aces). Additionally, MPs decreased the levels of key hydrolytic and acidogenic enzymes to inhibit hydrolysis and acidification processes. This research provides a basis for understanding and unveils impact mechanisms of the impact of MPs on sludge anaerobic fermentation.


Asunto(s)
Fermentación , Microplásticos , Eliminación de Residuos Líquidos , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Microplásticos/toxicidad , Aguas del Alcantarillado/microbiología , Redes y Vías Metabólicas , Contaminantes Químicos del Agua , Ácidos Grasos Volátiles/metabolismo , Microbiota/efectos de los fármacos , Reactores Biológicos
10.
Sci Total Environ ; 927: 172159, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575032

RESUMEN

Sediment contamination by heavy metals is a pressing environmental concern. While in situ metal stabilization techniques have shown promise, a great challenge remains in the simultaneous immobilization of multi-metals co-existing in contaminated sediments. This study aims to address this challenge by developing a practical method for stabilizing multi-metals by hydroxyapatite and calcium peroxide (HAP/CaO2) dosing strategies. Results showed that dosing 15.12 g of HAP/CaO2 at a ratio of 3:1 effectively transformed labile metals into stable fractions, reaching reaction kinetic equilibrium within one month with a pseudo-second-order kinetic (R2 > 0.98). The stable fractions of Nickel (Ni), Chromium (Cr), and lead (Pb) increased by approximately 16.9 %, 26.7 %, and 21.9 %, respectively, reducing heavy metal mobility and ensuring leachable concentrations complied with the stringent environmental Class I standard. Mechanistic analysis indicated that HAP played a crucial role in Pb stabilization, exhibiting a high rate of 0.0176 d-1, while Cr and Ni stabilization primarily occurred through the formation of hydroxide precipitates, as well as the slowly elevated pH (>8.5). Importantly, the proposed strategy poses a minimal environmental risk to benthic organisms exhibits almost negligible toxicity towards Vibrio fischeri and the Chironomus riparius, and saves about 71 % of costs compared to kaolinite. These advantages suggest the feasibility of HAP/CaO2 dosing strategies in multi-metal stabilization in contaminated sediments.


Asunto(s)
Durapatita , Peróxidos , Contaminantes Químicos del Agua , Durapatita/química , Contaminantes Químicos del Agua/análisis , Peróxidos/química , Metales Pesados , Sedimentos Geológicos/química , Restauración y Remediación Ambiental/métodos
11.
Chemosphere ; 346: 140538, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303397

RESUMEN

To enhance the polarization distribution of electron cloud density on the catalyst surface, we have introduced a novel bimetallic-substituted dual-reaction center (DRC) catalyst (FeCo-γ-Al2O3) comprising iron (Fe) and cobalt (Co) for the decomplexation and mineralization of heavy metal complex Ni-EDTA in this study. Compared to the catalysts doped solely with Fe or Co, the bimetal-doped catalyst offered several advantages, including enhanced electron cloud polarization distribution, additional electron transfer pathway, and improved capacity of free radical generation. Through DFT calculations and EPR tests, we have elucidated the influences of the catalyst's adsorption toward Ni-EDTA and its decomplexation products on the electron transfer between the pollutant and the catalyst. The competition between the pollutants and H2O2 affects the generation of free radicals in both electron-rich Fe and Co centers as well as electron-deficient Al center. Building on these findings, we have proposed a plausible removal mechanism of Ni-EDTA using the heterogeneous Fenton-like catalyst FeCo-γ-Al2O3. This study sheds light on the potential of FeCo-γ-Al2O3 as a DRC catalyst and emphasizes the significance of pollutant characteristics in determining the catalyst's performance.


Asunto(s)
Electrones , Contaminantes Ambientales , Ácido Edético , Peróxido de Hidrógeno , Hierro , Catálisis , Cobalto
12.
Water Res ; 251: 121107, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218075

RESUMEN

Aerobic methane oxidation coupled with denitrification (AME-D) has garnered significant attention as a promising technology for nitrogen removal from water. Effective biofilm management on the membrane surface is essential to enhance the efficiency of nitrate removal in AME-D systems. In this study, we introduce a novel and scalable layer-structured membrane (LSM) developed using a meticulously designed polyurethane sponge. The application of the LSM in advanced biofilm management for AME-D resulted in a substantial enhancement of denitrification performance. Our experimental results demonstrated remarkable improvements in nitrate-removal flux (92.8 mmol-N m-2 d-1) and methane-oxidation rate (325.6 mmol m-2 d-1) when using an LSM in a membrane biofilm reactor (L-MBfR) compared with a conventional membrane reactor (C-MBfR). The l-MBfR exhibited 12.4-, 6.8- and 3.4-fold increases in nitrate-removal rate, biomass-retention capacity, and methane-oxidation rate, respectively, relative to the control C-MBfR. Notably, the l-MBfR demonstrated a 3.5-fold higher abundance of denitrifying bacteria, including Xanthomonadaceae, Rhodocyclaceae, and Methylophilaceae. In addition, the denitrification-related enzyme activity was twice as high in the l-MBfR than in the C-MBfR. These findings underscore the LSM's ability to create anoxic/anaerobic microenvironments conducive to biofilm formation and denitrification. Furthermore, the LSM exhibited a unique advantage in shaping microbial community structures and facilitating cross-feeding interactions between denitrifying bacteria and aerobic methanotrophs. The results of this study hold great promise for advancing the application of MBfRs in achieving efficient and reliable nitrate removal through the AME-D pathway, facilitated by effective biofilm management.


Asunto(s)
Metano , Nitratos , Metano/metabolismo , Nitratos/metabolismo , Desnitrificación , Reactores Biológicos/microbiología , Bacterias/metabolismo , Oxidación-Reducción , Biopelículas , Nitrógeno/metabolismo
13.
Environ Res ; 242: 117770, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029821

RESUMEN

Aerobic granular sludge (AGS) needs a long start-up time and always shows unstable performance when it is used to treat low-strength wastewater. In this study, a rapid static feeding combined with Fe2+ addition as a novel strategy was employed to improve the formation and stability of AGS in treating low-strength wastewater. Fe-AGS was formed within only 7 days and showed favorable pollutant removal capability and settling performance. The ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) concentration in the effluent were lower than 5 mg/L and 50 mg/L after day 23, respectively. The sludge volume index (SVI) and mixed liquid suspended solids (MLSS) was 37 mL/g and 2.15 g/L on day 50, respectively. Rapid static feeding can accelerate granules formation by promoting the growth of heterotrophic bacteria, but the granules are unstable due to filamentous bacteria overgrowth. Fe2+ addition can inhibit the growth of filamentous bacteria and promote the aggregation of functional bacteria (eg. Nitrosomonas, Nitrolancea, Paracoccus, Diaphorobacter) by enhancing the secretion of extracellular polymeric substances (EPS). This study provides a new way for AGS application in low-strength wastewater treatment.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Aerobiosis , Reactores Biológicos/microbiología , Nitrógeno
14.
Environ Pollut ; 339: 122736, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838321

RESUMEN

Recently, it has been reported that chlorine dioxide (ClO2) and (bi)sulfite/ClO2 showed excellent performance in micropollutant removal from water; however, the degradation mechanisms and application boundaries of the two system have not been identified. In this study, bisphenol A (BPA) was chosen as the target contaminant to give multiple comparisons of ClO2 and S(IV)/ClO2 process regarding the degradation performance of contaminant, generation of reactive species, transformation of products and toxicity variation. Both ClO2 and S(IV)/ClO2 can degrade BPA within 3 min. The BPA degradation mechanism was mainly based on direct oxidation in ClO2 process while it was attributed to radicals (especially SO4·-) generation in S(IV)/ClO2 process. Meanwhile, the effect of pH and coexisting substances (Cl-, Br-, HCO3- and HA) were evaluated. It was found that ClO2 preferred the neutral and alkaline condition and S(IV)/ClO2 preferred the acidic condition for BPA degradation. An unexpected speed-up of BPA degradation was observed in ClO2 process in the presence of Br-, HCO3- and HA. In addition, the intermediate products in BPA degradation were identified. Three exclusive products were found in ClO2 process, in which p-benzoquinone was considered to be the reason of the acute toxicity increase in ClO2 process.


Asunto(s)
Compuestos de Cloro , Contaminantes Químicos del Agua , Purificación del Agua , Óxidos/toxicidad , Óxidos/química , Compuestos de Cloro/toxicidad , Compuestos de Cloro/química , Fenoles/toxicidad , Oxidación-Reducción , Cloro/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
15.
Water Res ; 245: 120646, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37748343

RESUMEN

In this study, an anaerobic moving bed biofilm reactor (AnMBBR) was developed for simultaneous methanogenesis and denitrification (SMD) to treat high-strength landfill leachate for the first time. A novel strategy using biosurfactant to ameliorate the inhibition of landfill leachate on the SMD performance was proposed and the underlying mechanisms were explored comprehensively. With the help of rhamnolipids, the chemical oxygen demand (COD) removal efficiency of landfill leachate was improved from 86.0% ± 2.9% to 97.5% ± 1.6%, while methane yields increased from 50.1 mL/g-COD to 69.6 mL/g-COD, and the removal efficiency of NO3--N was also slightly increased from 92.5% ± 1.9% to 95.6% ± 1.0%. The addition of rhamnolipids increased the number of live cells and enhanced the secretion of extracellular polymeric substances (EPS) and key enzyme activity, indicating that the inhibitory effect was significantly ameliorated. Methanogenic and denitrifying bacteria were enhanced by 1.6 and 1.1 times, respectively. Analysis of the microbial metabolic pathways demonstrated that landfill leachate inhibited the expression of genes involved in methanogenesis and denitrification, and that their relative abundance could be upregulated with the assistance of rhamnolipids addition. Moreover, extended Deraguin - Landau - Verwery - Oxerbeek (XDLVO) theory analysis indicated that rhamnolipids reduced the repulsive interaction between biofilms and pollutants with a 57.0% decrease in the energy barrier, and thus accelerated the adsorption and uptake of pollutants onto biofilm biomass. This finding provides a low-carbon biological treatment protocol for landfill leachate and a reliable and effective strategy for its sustainable application.

16.
Bioresour Technol ; 384: 129269, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290706

RESUMEN

This study investigated the response of nitrite accumulation to elevated COD/NO3--N ratio (C/N) during partial denitrification (PD). Results indicated nitrite was gradually accumulated and remained stable (C/N = 1.5 âˆ¼ 3.0), while that rapidly declined after reaching the peak (C/N = 4.0 âˆ¼ 5.0). The polysaccharide (PS) and protein (PN) content of tightly-bound extracellular polymeric substances (TB-EPS) reached the maximum at C/N of 2.5 âˆ¼ 3.0, which might be stimulated by high level of nitrite. Illumina MiSeq sequencing showed Thauera and OLB8 were dominated denitrifying genera at C/N of 1.5 âˆ¼ 3.0, while Thauera was further enriched with fading OLB8 at C/N of 4.0 âˆ¼ 5.0. Meanwhile, the highly-enriched Thauera might enhance the activity of nitrite reductase (nirK) promoting further nitrite reduction. Redundancy analysis (RDA) showed positive correlations between nitrite production and PN content of TB-EPS, denitrifying bacteria (Thauera and OLB8) and nitrate reductases (narG/H/I) in low C/N. Finally, their synergistic effects for driving nitrite accumulation were comprehensively elucidated.


Asunto(s)
Microbiota , Nitritos , Nitritos/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Desnitrificación , Nitrógeno/metabolismo , Thauera/metabolismo
17.
Environ Sci Pollut Res Int ; 30(26): 68863-68876, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37129825

RESUMEN

The purpose of this study was to compare the impact of different numbers of alternating aerobic/anoxic (A/O) cycles on pollutant removal. Three sequential batch reactors (SBRs) with varying numbers of alternating A/O cycles were established. Under the tertiary anoxic operating conditions, the removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) were 88.73%, 89.56%, 72.15%, and 77.61%, respectively. Besides, alternating A/O affected the dominant microbial community relative abundance (Proteobacteria and Bacteroidetes) and increased microbial richness and diversity. It also increased the relative abundance of aerobic denitrifying, heterotrophic nitrifying, and denitrifying phosphorus removal bacteria to change N and P removal patterns. Furthermore, the abundance of carbohydrate metabolism and amino acid metabolism was improved by alternating A/O to improve organic matter and TN removal.


Asunto(s)
Fósforo , Eliminación de Residuos Líquidos , Humanos , Fósforo/metabolismo , Nitrógeno/análisis , Bacterias/metabolismo , Hipoxia , Reactores Biológicos/microbiología , Desnitrificación , Aguas del Alcantarillado
18.
Bioresour Technol ; 379: 129003, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37019412

RESUMEN

An integrated process of electrochemical pre-treatment with carrier-based membrane bioreactor (MBR) was constructed for fresh leachate from waste transfer stations with high organic and NH4+-N content. Results showed that within a hydraulic retention time 40 h, the removal efficiencies of chemical oxygen demand (COD), NH4+-N, suspended solids (SS) and total phosphorus (TP) were over 98.5%, 91.2%, 98.3% and 98.4%, respectively, with the organic removal rate of 18.7 kg/m3. The effluent met the Grade A Standard of China (GB/T31962-2015). Pre-treatment contributed about 70 % of the degraded refractory organics and almost all the SS, with the transformation of the humic-like acid to readily biodegradable organics. Biotreatment further removed over 50% of nitrogen pollutants through simultaneous nitrification and denitrification (SND) and consumed about 30% of organics. Meanwhile, the addition of carriers in the oxic MBR enhanced the attached biomass and denitrification enzyme activity, alleviating membrane fouling.


Asunto(s)
Reactores Biológicos , Nitrificación , Nitrógeno/química , Fósforo , Análisis de la Demanda Biológica de Oxígeno
19.
Sci Total Environ ; 883: 163610, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37088392

RESUMEN

Because of potential risks to public health, the presence of haloacetic acids (HAAs) in drinking water is a major concern. Nanofiltration (NF) has shown potential for HAAs rejection, and several factors, namely, membrane properties, solute properties, and operating conditions, have been revealed key roles. However, knowledge of NF separation mechanism by quantifying these factors is limited. This study investigated and modeled NF performance on HAAs rejection. NF performance was experimentally investigated under various transmembrane pressure (TMP), cross-flow velocity (CV), temperature, pH, ionic strength (IS), and HAAs initial feed concentration (Cin). We used machine learning (ML) to understand the mechanism from the perspective of HAAs properties and operating conditions. Multiple linear regression (MLR), support vector machine (SVM), multsilayer perceptron (MLP), extreme gradient boosting (XGBoost), and random forest (RF) models were used. The MLP, XGBoost and RF models achieved significant performance with high R2 (0.970, 0.973, and 0.980) and low RMSE (4.71, 4.41, and 3.84). These three models were analyzed using the Shapley Additive explanation (SHAP) to quantify relative contributions of HAAs properties and operating conditions. XGBoost-SHAP produced the most logical results and was the best-performing model for selecting optimal input variables combinations. The results showed that Stokes radius (rs), logarithmic octanol-water partitioning coefficient (logKow), molecular weight (MW), pH, TMP, and temperature are key variables for interpreting NF process. The effects of HAAs properties were ranked as rs > logKow > MW, suggesting significance of size exclusion and hydrophobic interaction. The impact of the operational conditions followed the order pH > TMP > temperature, illustrating that pH was the major influencing operating condition. This study demonstrated significant capacity of ML, which reduced amount of experimental work. In addition, the main operating conditions can be evaluated in terms of their contributions, making ML an efficient tool for risk management and process optimization.

20.
Bioresour Technol ; 379: 129032, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37031805

RESUMEN

To reveal the impact of thermal hydrolysis pretreatment (THP) temperature on the unclear mechanisms of volatile fatty acids (VFAs) production, four groups were established with different temperatures (100, 120, 140 and 160 °C), and high throughput sequencing technology was utilized. The results indicated that the optimal VFAs production occurred at 140 °C. Moreover, as the THP temperature increased, the proportion of acetic acid also increased, accounting for 10.8% to 26.7% of the VFAs, compared to only 4.9% in the control group. Mechanism investigations revealed that THP facilitated the hydrolysis and release of biodegradable organic matter. Moreover, the abundance of VFAs production and hydrolytic microorganisms and related metabolic functional genes expression were evidently improved by THP. Overall, this study deepens the understanding of the mechanisms through which different THP temperatures stimulate the production of VFAs through acidogenic fermentation, providing technical support for future THP application in sludge treatment.


Asunto(s)
Ácidos Grasos Volátiles , Aguas del Alcantarillado , Fermentación , Temperatura , Hidrólisis , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA