Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(36): 19985-19993, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39207302

RESUMEN

Ovalbumin (OVA) is a high-quality protein for humans. Modifying microorganisms to produce proteins offers a solution to potential food protein shortages. In this study, OVA was expressed in Saccharomyces cerevisiae. Initially, screening signal peptides led to extracellular OVA reaching 3.4 mg/L using the INU1 signal peptide. Coexpressing Kar2 and PDI increased OVA production to 5.1 mg/L. Optimizing the expression levels of regulators OPI1, INO2, and INO4 expanded the endoplasmic reticulum membrane, raising yield to 5.5 mg/L. Combining both strategies increased OVA production to 6.2 mg/L, 82% higher than control. This strategy also enhanced secretion of other proteins. Finally, fed-batch fermentation in a 3-L bioreactor significantly boosted OVA production to 116.3 mg/L. This study provides insights for the heterologous synthesis of other high-quality proteins for future food applications.


Asunto(s)
Retículo Endoplásmico , Ovalbúmina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ovalbúmina/metabolismo , Fermentación , Animales , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
2.
J Fungi (Basel) ; 10(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39194904

RESUMEN

Fusarium graminearum, a devastating fungal pathogen, causes great economic losses to crop yields worldwide. The present study investigated the potential of Streptomyces pratensis S10 to alleviate F. graminearum stress in wheat seedlings based on plant growth-promoting and resistance-inducing assays. The bioassays revealed that S10 exhibited multiple plant growth-promoting properties, including the production of siderophores, 1-aminocyclopropane-1-carboxylic acid deaminase (ACC), and indole-3-acetic acid (IAA), phosphate solubilization, and nitrogen fixation. Meanwhile, the pot experiment demonstrated that S10 improved wheat plant development, substantially enhancing wheat height, weight, root activity, and chlorophyll content. Consistently, genome mining identified abundant genes associated with plant growth promotion. S10 induced resistance against F. graminearum in wheat seedlings. The disease incidence and disease index reduced by nearly 52% and 65% in S10 pretreated wheat seedlings, respectively, compared with those infected with F. graminearum only in the non-contact inoculation assay. Moreover, S10 enhanced callose deposition and reactive oxygen species (ROS) accumulation and induced the activities of CAT, SOD, POD, PAL, and PPO. Furthermore, the quantitative real-time PCR (qRT-PCR) results indicated that S10 pretreatment increased the expression of SA- (PR1.1, PR2, PR5, and PAL1) and JA/ET-related genes (PR3, PR4a, PR9, and PDF1.2) in wheat seedlings upon F. graminearum infection. In summary, S. pratensis S10 could be an integrated biological agent and biofertilizer in wheat seedling blight management and plant productivity enhancement.

3.
Gerontology ; : 1-9, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102786

RESUMEN

INTRODUCTION: Malnutrition is common in older atrial fibrillation (AF) patients and results in poor clinical outcomes. The Geriatric Nutritional Risk Index (GNRI) is a straightforward method for evaluating nutritional health. However, its prognostic value in AF patients is unclear. This research focused on examining the correlation between GNRI and overall mortality in Chinese individuals with AF. METHODS: We performed a multicenter retrospective study at four Chinese hospitals involving patients diagnosed with AF between January 2019 and August 2023. Using GNRI, nutritional status was evaluated, classifying patients into three categories. Multivariable logistic regression and restricted cubic spline analysis assess the relationship between GNRI and mortality, with exploratory subgroup analyses investigating potential effect modifiers. RESULTS: The study included 4,878 AF patients with a median follow-up of 19 months. The mean age was 71 (63-78), and the mean GNRI was 102 (95-108). Malnutrition was identified in 1,776 patients (36.41%). During the study, 419 (8.59%) deaths occurred. After controlling for confounders, moderate to severe malnutrition was linked to an increased risk of all-cause mortality compared to no malnutrition (odds ratio 1.50; 95% CI, 1.17-1.94). The relationship between GNRI and mortality risk was approximately linear, with consistent associations across subgroups. CONCLUSION: Malnutrition, as assessed by GNRI, is prevalent among Chinese AF patients and is independently linked to higher all-cause mortality risk.

4.
Phytopathology ; 114(8): 1770-1781, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38809607

RESUMEN

Fusarium head blight (FHB) of wheat, mainly caused by Fusarium graminearum, leads to severe economic losses worldwide. Effective management measures for controlling FHB are not available due to a lack of resistant cultivars. Currently, the utilization of biological control is a promising approach that can be used to help manage FHB. Previous studies have confirmed that Streptomyces pratensis S10 harbors excellent inhibitory effects on F. graminearum. However, there is no information regarding whether invasive hyphae of F. graminearum are inhibited by S10. Thus, we investigated the effects of S10 on F. graminearum strain PH-1 hypha extension, toxisome formation, and TRI5 gene expression on wheat plants via microscopic observation. The results showed that S10 effectively inhibited the spread of F. graminearum hyphae along the rachis, restricting the infection of neighboring florets via the phloem. In the presence of S10, the hyphal growth is impeded by the formation of dense cell wall thickenings in the rachis internode surrounding the F. graminearum infection site, avoiding cell plasmolysis and collapse. We further demonstrated that S10 largely prevented cell-to-cell invasion of fungal hyphae inside wheat coleoptiles using a constitutively green fluorescence protein-expressing F. graminearum strain, PH-1. Importantly, S. pratensis S10 inhibited toxisome formation and TRI5 gene expression in wheat plants during infection. Collectively, these findings indicate that S. pratensis S10 prevents the spread of F. graminearum invasive hyphae via the rachis.


Asunto(s)
Fusarium , Hifa , Enfermedades de las Plantas , Streptomyces , Triticum , Fusarium/fisiología , Fusarium/patogenicidad , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Streptomyces/fisiología , Streptomyces/genética , Hifa/crecimiento & desarrollo
5.
J Agric Food Chem ; 72(20): 11392-11404, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717972

RESUMEN

Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.


Asunto(s)
Botrytis , Fragaria , Proteínas de Plantas , Salicilatos , Resistencia a la Enfermedad/genética , Fragaria/enzimología , Fragaria/genética , Fragaria/microbiología , Frutas/enzimología , Frutas/genética , Frutas/microbiología , Regulación de la Expresión Génica de las Plantas , Simulación del Acoplamiento Molecular , Familia de Multigenes , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salicilatos/metabolismo
6.
Environ Pollut ; 347: 123775, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503350

RESUMEN

Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.


Asunto(s)
Acetatos , Factor Neurotrófico Derivado de la Línea Celular Glial , Éteres Difenilos Halogenados , Fenoles , Células de Sertoli , Ratones , Animales , Masculino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Testículo/metabolismo , Espermatogonias , Espermatogénesis , Tretinoina/metabolismo , Tretinoina/farmacología
7.
Environ Sci Pollut Res Int ; 31(9): 13856-13866, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265582

RESUMEN

Exposure to silica nanoparticles (SiNPs) could causally contribute to malfunctioning of the spermatogenesis, but the underlying mechanism is rarely known. This study was designed to explore the mechanism of Crem hypermethylation in SiNP-induced reproductive toxicity. The male mice were exposure to SiNPs (0 and 20 mg/kg·bw) once every 5 days via intratracheal instillation for 35 days. After exposure stopped, half of each group was killed, and the rest were sacrificed after another 15-day feeding. GC-2 cells were treated with 0 and 20 µg/mL SiNPs. The results showed that SiNPs led to structure damage of spermatocyte and sperm, caused spermatocyte apoptosis, and decreased sperm quantity and quality. After 15 days of the withdrawal, the testicular tissue damage gradually recovered. Mechanistic study showed that SiNPs induced hypermethylation of the gene of cAMP responsive element modulator (Crem) in the promoter region. Downregulation of Crem inhibited the expression of outer dense fiber 1 (Odf1), resulting in abnormal sperm flagella structure; at the same time, Crem inhibited the expression of Bcl-xl, causing upregulation of cytochrome-C, cleaved-caspase-9/caspase-9, cleaved-caspase-3/caspase-3, resulting in mitochondrial dependent apoptotic pathway. However, 5-aza, DNA methylation inhibitor, could reverse the SiNP-induced downregulation of Crem and reverse the Crem/Bcl-xl-mediated mitochondrial dependent apoptotic pathway. These results suggested SiNPs could disrupt spermatogenesis by causing Crem hypermethylation to regulate the Odf1 and Bcl-xl in spermatocytes resulting in the sperm flagella structure and spermatocyte apoptosis. Our study provided new insights into the male reproductive toxicity mechanism of SiNPs; Crem demethylation may be a potential way to prevent reproductive dysfunction from SiNP exposure.


Asunto(s)
Nanopartículas , Espermatocitos , Masculino , Animales , Ratones , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Dióxido de Silicio/química , Metilación de ADN , Semen/metabolismo , Apoptosis/genética , Espermatozoides/metabolismo , Nanopartículas/toxicidad , Nanopartículas/química , Flagelos/metabolismo
8.
Int J Biol Macromol ; 260(Pt 1): 129333, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218279

RESUMEN

Methylesterases (MES) are involved in hydrolysis of carboxylic esters, which have substantial roles in plant metabolic activities and defense mechanisms. This study aimed to comprehensively investigate Brassica napus BnMESs and characterize their role in response to Plasmodiophora brassicae stress. Forty-four BnMES members were identified and categorized into three groups based on their phylogenetic relationships and structural similarities. Through functional predictions in the promoter regions and analysis of RNA-Seq data, BnMES emerged as pivotal in growth, development, and stress responses to B. napus, particularly BnMES34, was strongly induced in response to P. brassicae infection. Gene Ontology analyses highlighted BnMES34's role in regulation of plant disease resistance responses. Furthermore, overexpression of BnMES34 in A. thaliana exhibited milder clubroot symptoms, and reduced disease indices, suggesting positive regulatory role of BnMES34 in plant's response to P. brassicae stress. Molecular docking and enzyme activity verification indicated that BnMES34 has the ability to generate salicylic acid via methyl salicylate, and further experimentally validated in vivo. This discovery indicates that the overexpression of BnMES34 in Arabidopsis confers resistance against clubroot disease. Overall, our research suggests that BnMES34 has a beneficial regulatory role in enhancing stress resistance to P. brassicae in B. napus.


Asunto(s)
Arabidopsis , Plasmodiophorida , Arabidopsis/genética , Arabidopsis/metabolismo , Plasmodiophorida/metabolismo , Filogenia , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas/genética , Ácido Salicílico/metabolismo , Evolución Molecular
9.
Environ Toxicol ; 39(3): 1471-1480, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37994397

RESUMEN

There was a link between exposure to PM2.5 and male infertility. Melatonin has beneficial effects on the male reproductive processes. How PM2.5 caused spermatogenesis disturbance and whether melatonin could prevent PM2.5-induced reproductive toxicity have remained unclear. The results showed that PM2.5 could inhibit the Nrf2-mediated antioxidant pathway and distinctly increase the cell apoptosis in testes. Moreover, PM2.5 also perturbed the process of meiosis by modulating meiosis-associated proteins such as γ-H2AX and Stra8. Mechanistically, PM2.5 inhibited G9a-dependent H3K9 methylation and SIRT3-mediated p53 deacetylation, which consistent with decreased sperm count and motility rate in ApoE-/- mice. Further investigation revealed melatonin effectively alleviated PM2.5-induced meiosis inhibition by preserving H3K9 methylation. Melatonin also alleviated PM2.5-induced apoptosis by regulating SIRT3-mediated p53 deacetylation. Overall, our study revealed PM2.5 resulted in spermatogenesis disorder by perturbing meiosis via G9a-dependent H3K9 di-methylation and causing cell apoptosis via SIRT3/p53 deacetylation pathway and provided promising insights into the protective role of melatonin in air pollution associated with male infertility.


Asunto(s)
Infertilidad Masculina , Melatonina , Sirtuina 3 , Humanos , Masculino , Ratones , Animales , Melatonina/farmacología , Sirtuina 3/metabolismo , Sirtuina 3/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Semen/metabolismo , Espermatogénesis , Metilación , Material Particulado/toxicidad
10.
Reprod Toxicol ; 123: 108522, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096957

RESUMEN

The endometrium undergoes dynamic changes throughout the menstrual cycle and pregnancy, which is unique to primates. Endometrium remodeling is essential for the implantation and nutritional support of the conceptus. Despite this, the role of uterine glands in driving endometrial tissue remodeling is still poorly understood. To address this, a 3-dimensional culture system was used to generate endometrial epithelial organoids from human endometrium biopsies. These organoids are genetically stable, long-term expandability. They reproduce some functions of uterine glands in vivo. The epithelial organoids exhibit characteristics of stem cells, with the proportion of stem cells increasing with culture time and passage number. Long-term maintenance of organoids strongly expressed stemness related genes accompanied by a decrease expression in mature epithelial gene, which suggests the organoids had switched from a mature stage to a progenitor stage. Thus we proposed the possible markers for epithelial progenitors. Meanwhile, long-term cultured organoids exhibit an increase in the proportion of luminal epithelial stem cells, accompanied by a decrease of glandular epithelial stem cells. Organoids also show hormone responsiveness, reflecting the various stages of the menstrual cycle and early pregnancy.


Asunto(s)
Endometrio , Células Epiteliales , Embarazo , Animales , Femenino , Humanos , Células Epiteliales/metabolismo , Ciclo Menstrual , Organoides , Células Madre
11.
BMC Plant Biol ; 23(1): 230, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120546

RESUMEN

BACKGROUND: Peach (Prunus persica L. Batsch) is one of the most popular fruits worldwide. Although the reference genome of 'Lovell' peach has been released, the diversity of genome-level variations cannot be explored with one genome. To detect these variations, it is necessary to assemble more genomes. RESULTS: We sequenced and de novo assembled the genome of 'Feichenghongli' (FCHL), a representative landrace with strict self-pollination, which maintained the homozygosity of the genome as much as possible. The chromosome-level genome of FCHL was 239.06 Mb in size with a contig N50 of 26.93 Mb and only 4 gaps at the scaffold level. The alignment of the FCHL genome with the reference 'Lovell' genome enabled the identification of 432535 SNPs, 101244 insertions and deletions, and 7299 structural variants. Gene family analysis showed that the expanded genes in FCHL were enriched in sesquiterpenoids and triterpenoid biosynthesis. RNA-seq analyses were carried out to investigate the two distinct traits of late florescence and narrow leaves. Two key genes, PpDAM4 and PpAGL31, were identified candidates for the control of flower bud dormancy, and an F-box gene, PpFBX92, was identified as a good candidate gene in the regulation of leaf size. CONCLUSIONS: The assembled high-quality genome could deepen our understanding of variations among diverse genomes and provide valuable information for identifying functional genes and improving the molecular breeding process.


Asunto(s)
Prunus persica , Prunus , Prunus persica/genética , Prunus/genética , Hojas de la Planta/genética , Fenotipo , Genoma de Planta
12.
Oncol Rep ; 49(4)2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36866771

RESUMEN

Subsequently to the publication of the above article, a concerned reader drew to our attention that the data panel shown in Fig. 7A for the 400 µM isoquercitrin experiment had previously appeared in Fig. 4A in another article published in the journal International Journal of Oncology [Tang B, Li Y, Yuan S, Tomlinson S and He S: Upregulation of the δ opioid receptor in liver cancer promotes liver cancer progression both in vitro and in vivo. Int J Oncol 43: 1281­1290, 2013], indicating that results that were purported to have been obtained under different experimental conditions had been derived from the same original source. Furthermore, concerns were also raised regarding the originality of some of the other data belonging to this figure. Given the errors that were identified in the compilation of Fig. 7 in this article, the Editor of Oncology Reports has decided that this article should be retracted from the publication owing to a lack of overall confidence in the presented data. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience that might result from the retraction of this article. [Oncology Reports 31: 2377­2384, 2014; DOI: 10.3892/or.2014.3099].

13.
J Clin Virol ; 161: 105423, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934591

RESUMEN

BACKGROUND: Human Respiratory Syncytial Virus (RSV) infections pose a significant risk to human health worldwide, especially for young children. Whole genome sequencing (WGS) provides a useful tool for global surveillance to better understand the evolution and epidemiology of RSV and provide essential information that may impact on antibody treatments, antiviral drug sensitivity and vaccine effectiveness. OBJECTIVES: Here we report the development of a rapid and simplified amplicon-based one-step multiplex reverse-transcription polymerase chain reaction (mRT-PCR) for WGS of both human RSV-A and RSV-B viruses. STUDY DESIGN: Two mRT-PCR reactions for each sample were designed to generate amplicons for RSV WGS. This new method was tested and evaluated by sequencing 206 RSV positive clinical samples collected in Australia in 2020 and 2021 with RSV Ct values between 10 and 32. RESULTS: In silico analysis and laboratory testing revealed that the primers used in the new method covered most of the currently circulating RSV-A and RSV-B. Amplicons generated were suitable for both Illumina and Oxford Nanopore Technologies (ONT) NGS platforms. A success rate of 83.5% with a full coverage for the genome of 98 RSV-A and 74 RSV-B was achieved from all clinical samples tested. CONCLUSIONS: This assay is simple to set up, robust, easily scalable in sample preparation and relatively inexpensive, and as such, provides a valuable addition to existing NGS RSV WGS methods.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Humanos , Preescolar , Virus Sincitial Respiratorio Humano/genética , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/epidemiología , Reacción en Cadena de la Polimerasa Multiplex , Antivirales , Sensibilidad y Especificidad
14.
Microorganisms ; 10(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36144312

RESUMEN

Watermelon Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (FON), is one of the most important diseases, and has become a major limiting factor to watermelon production worldwide. Previous research has found that the improved biocontrol agent, F1-35, had a high control efficiency to watermelon Fusarium wilt. In this study, the control efficiency of F1-35 to watermelon Fusarium wilt was firstly tested, and the control efficiency was 61.7%. Then, we investigated the mode of action of F1-35 in controlling watermelon Fusarium wilt. Using a pairing assay, we found that F1-35 did not inhibit the normal growth of FON. To know more about the interaction between F1-35 and watermelon root, the protein expressions of roots after 12, 24, and 48 h post-inoculation were examined. A total of 1109 differentially expressed proteins were obtained. KEGG analysis found that the most differentially expressed proteins occurred in alpha-linolenic acid metabolism, cysteine and methionine metabolism, plant-pathogen interaction, and the MAPK signaling pathway to the plant. A further analysis of differentially expressed proteins showed that F1-35 triggered the jasmonic acid and ethylene pathways in watermelon. To validate our results, the qRT-PCR was used to analyze the gene expression levels of PAL, LOX1, and CTR1. The gene expression results showed that those genes, which were positive correlated with the JA pathway, were up-expressed, including PAL and LOX1, and the negative associated gene, CTR1, was down-expressed. In conclusion, the improved biocontrol agent, F1-35, improves the resistance of watermelons to FON by triggering the JA and ET pathways.

15.
Nat Commun ; 13(1): 2884, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610217

RESUMEN

Human respiratory syncytial virus (RSV) is an important cause of acute respiratory infection with the most severe disease in the young and elderly. Non-pharmaceutical interventions and travel restrictions for controlling COVID-19 have impacted the circulation of most respiratory viruses including RSV globally, particularly in Australia, where during 2020 the normal winter epidemics were notably absent. However, in late 2020, unprecedented widespread RSV outbreaks occurred, beginning in spring, and extending into summer across two widely separated regions of the Australian continent, New South Wales (NSW) and Australian Capital Territory (ACT) in the east, and Western Australia. Through genomic sequencing we reveal a major reduction in RSV genetic diversity following COVID-19 emergence with two genetically distinct RSV-A clades circulating cryptically, likely localised for several months prior to an epidemic surge in cases upon relaxation of COVID-19 control measures. The NSW/ACT clade subsequently spread to the neighbouring state of Victoria and to cause extensive outbreaks and hospitalisations in early 2021. These findings highlight the need for continued surveillance and sequencing of RSV and other respiratory viruses during and after the COVID-19 pandemic, as mitigation measures may disrupt seasonal patterns, causing larger or more severe outbreaks.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Lactante , Pandemias/prevención & control , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/genética , Estaciones del Año , Victoria
16.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395208

RESUMEN

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Ubiquitinación , Proteína 7 que Contiene Repeticiones F-Box-WD/química , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Germinativas , Mutación de Línea Germinal , Humanos , Trastornos del Neurodesarrollo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
Hum Mol Genet ; 31(4): 614-624, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34542157

RESUMEN

SHQ1 is essential for biogenesis of H/ACA ribonucleoproteins, a class of molecules important for processing ribosomal RNAs, modifying spliceosomal small nuclear RNAs and stabilizing telomerase. Components of the H/ACA ribonucleoprotein complex have been linked to neurological developmental defects. Here, we report two sibling pairs from unrelated families with compound heterozygous variants in SHQ1. Exome sequencing was used to detect disease causing variants, which were submitted to 'matching' platforms linked to MatchMaker Exchange. Phenotype comparisons supported these matches. The affected individuals present with early-onset dystonia, with individuals from one family displaying additional neurological phenotypes, including neurodegeneration. As a result of cerebrospinal fluid studies suggesting possible abnormal dopamine metabolism, a trial of levodopa replacement therapy was started but no clear response was noted. We show that fibroblasts from affected individuals have dramatic loss of SHQ1 protein. Variants from both families were expressed in Saccharomyces cerevisiae, resulting in a strong reduction in H/ACA snoRNA production and remarkable defects in rRNA processing and ribosome formation. Our study identifies SHQ1 as associated with neurological disease, including early-onset dystonia, and begins to delineate the molecular etiology of this novel condition.


Asunto(s)
Distonía , Trastornos Distónicos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Saccharomyces cerevisiae , Distonía/genética , Trastornos Distónicos/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
J Healthc Eng ; 2021: 4392595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925733

RESUMEN

Background: Few studies exist on the predictive factors of tibial fractures with hidden posterior ankle fractures. Objective: To study the incidence and predictive factors of tibial fractures with occult posterior ankle fractures. Methods: Tibial fracture patients were prospectively selected who were admitted to our hospital from January 2016 to May 2021 and their general clinical data, X-ray images, CT images, and other imaging data were collected and then divided them into posterior malleolus fracture group and nonposterior malleolus fracture group according to the presence or absence of posterior malleolus fractures. Multivariate regression analysis and receiver operating curves (ROC) were performed to analyze the influencing factors of tibial fracture with occult posterior ankle fracture. Results: CT showed that 25 (13.44%) patients had occult posterior ankle fractures among 186 patients with tibial fracture. There was no significant difference in gender, age, and locations of tibial fracture between the two groups (P > 0.05). There were statistical differences in the types, locations, and lengths of patients with tibial fracture but without posterior malleolus fractures. The length of the tibia fracture group was significantly lower than the tibia with posterior ankle fracture group (P < 0.05). Logistics regression analysis showed that tibial fracture with occult posterior ankle fracture was not significantly correlated with gender, age, and location of tibial fracture (P > 0.05), but was significantly correlated with tibial fracture type, location, and length (HR = 1.830, P=0.035; HR = 5.161, P=0.004; HR = 1.126, P=0.030). The ROC curve showed that the AUC of length of tibial fracture with occult posterior ankle fracture was 0.599. The YD index suggested that the best cut point for the prediction of tibial fracture with occult posterior ankle fracture was above 13.18%. The sensitivity and specificity of spiral tibial fracture and distal 1/3 tibial fracture for prediction were 88.00% and 63.35%, 92.00%, and 58.39%, respectively, which was significantly higher than that of tibial fracture length (P < 0.05). Conclusion: Patients with tibial fractures have a higher incidence of occult posterior ankle fractures. Spiral tibial fractures and distal 1/3 tibial fractures have a higher predictive value for tibial fracture with occult posterior ankle fractures and can help clinical detection as soon as possible, which is a more accurate and appropriate treatment.


Asunto(s)
Fracturas de Tobillo , Fracturas de la Tibia , Fracturas de Tobillo/diagnóstico por imagen , Fracturas de Tobillo/epidemiología , Articulación del Tobillo , Humanos , Incidencia , Estudios Retrospectivos , Fracturas de la Tibia/diagnóstico por imagen , Fracturas de la Tibia/epidemiología
19.
J Environ Sci (China) ; 109: 161-170, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34607665

RESUMEN

Decabrominated diphenyl ether (BDE-209) is generally utilized in multiple polymer materials as common brominated flame retardant. BDE-209 has been listed as persistent organic pollutants (POPs), which was considered to be reproductive toxin in the environment. But it still remains unclear about the effects of BDE-209 on DNA methylation and the induced-male reproductive toxicity. Due to the extensive epigenetic regulation in germ line development, we hypothesize that BDE-209 exposure impacts the statue of DNA methylation in spermatocytes in vitro. Therefore, the mouse GC-2spd (GC-2) cells were used for the genome wide DNA methylation analysis after treated with 32 µg/mL BDE-209 for 24 hr. The results showed that BDE-209 caused genomic methylation changes with 32,083 differentially methylated CpGs in GC-2 cells, including 16,164 (50.38%) hypermethylated and 15,919 (49.62%) hypomethylated sites. With integrated analysis of DNA methylation data and functional enrichment, we found that BDE-209 might affect the functional transcription in cell growth and sperm development by differential gene methylation. qRT-PCR validation demonstrated the involvement of p53-dependent DNA damage response in the GC-2 cells after BDE-209 exposure. In general, our findings indicated that BDE-209-induced genome wide methylation changes could be interrelated with reproductive dysfunction. This study might provide new insights into the mechanisms of male reproductive toxicity under the environmental exposure to BDE-209.


Asunto(s)
Metilación de ADN , Retardadores de Llama , Animales , Daño del ADN , Epigénesis Genética , Retardadores de Llama/toxicidad , Células Germinativas , Éteres Difenilos Halogenados/toxicidad , Masculino , Ratones
20.
BMC Biol ; 19(1): 132, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172044

RESUMEN

BACKGROUND: Oligodendrocytes, responsible for axon ensheathment, are critical for central nervous system (CNS) development, function, and diseases. OLIG2 is an important transcription factor (TF) that acts during oligodendrocyte development and performs distinct functions at different stages. Previous studies have shown that lncRNAs (long non-coding RNAs; > 200 bp) have important functions during oligodendrocyte development, but their roles have not been systematically characterized and their regulation is not yet clear. RESULTS: We performed an integrated study of genome-wide OLIG2 binding and the epigenetic modification status of both coding and non-coding genes during three stages of oligodendrocyte differentiation in vivo: neural stem cells (NSCs), oligodendrocyte progenitor cells (OPCs), and newly formed oligodendrocytes (NFOs). We found that 613 lncRNAs have OLIG2 binding sites and are expressed in at least one cell type, which can potentially be activated or repressed by OLIG2. Forty-eight of them have increased expression in oligodendrocyte lineage cells. Predicting lncRNA functions by using a "guilt-by-association" approach revealed that the functions of these 48 lncRNAs were enriched in "oligodendrocyte development and differentiation." Additionally, bivalent genes are known to play essential roles during embryonic stem cell differentiation. We identified bivalent genes in NSCs, OPCs, and NFOs and found that some bivalent genes bound by OLIG2 are dynamically regulated during oligodendrocyte development. Importantly, we unveiled a previously unknown mechanism that, in addition to transcriptional regulation via DNA binding, OLIG2 could self-regulate through the 3' UTR of its own mRNA. CONCLUSIONS: Our studies have revealed the missing links in the mechanisms regulating oligodendrocyte development at the transcriptional level and after transcription. The results of our research have improved the understanding of fundamental cell fate decisions during oligodendrocyte lineage formation, which can enable insights into demyelination diseases and regenerative medicine.


Asunto(s)
Oligodendroglía , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA