Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 236
1.
Int J Pharm X ; 7: 100248, 2024 Jun.
Article En | MEDLINE | ID: mdl-38689600

Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.

2.
Ren Fail ; 46(1): 2320834, 2024 Dec.
Article En | MEDLINE | ID: mdl-38482580

BACKGROUND: This study aims to undertake a comprehensive assessment of the effectiveness and safety profile of Mahuang Fuzi and Shenzhuo Decoction (MFSD) in the management of primary membranous nephropathy (PMN), within the context of a prospective clinical investigation. METHODS: A multicenter, open-label clinical trial was executed on patients diagnosed with PMN. These individuals were subjected to MFSD therapy for a duration of at least 24 months, with primary outcome of clinical remission rates. The Cox regression analysis was employed to discern the pertinent risk factors exerting influence on the efficacy of MFSD treatment, with scrupulous monitoring of any adverse events. RESULTS: The study comprised 198 participants in total. Following 24 months of treatment, the remission rate was 58.6% (116/198). Among the subgroup of 130 participants subjected to a 36-month follow-up, the remission rate reached 70% (91/130). Subgroup analysis revealed that neither a history of immunosuppressive therapy (HIST) nor an age threshold of ≥60 years exhibited a statistically significant impact on the remission rate at the 24-month mark (p > .05). Multivariate Cox regression analyses elucidated HIST, nephrotic syndrome, or mass proteinuria, and a high-risk classification as noteworthy risk factors in the context of MFSD treatment. Remarkably, no fatalities resulting from side effects were documented throughout the study's duration. CONCLUSIONS: This trial establishes the efficacy of MFSD as a treatment modality for membranous nephropathy. MFSD demonstrates a favorable side effect profile, and remission rates are consistent across patients, irrespective of HIST and age categories.


Diterpenes , Drugs, Chinese Herbal , Glomerulonephritis, Membranous , Nephrotic Syndrome , Humans , Middle Aged , Diterpenes/adverse effects , Glomerulonephritis, Membranous/drug therapy , Immunosuppressive Agents/adverse effects , Nephrotic Syndrome/drug therapy , Prospective Studies
3.
Front Pharmacol ; 15: 1345779, 2024.
Article En | MEDLINE | ID: mdl-38425646

A wound takes a long time to heal and involves several steps. Following tissue injury, inflammation is the primary cause of tissue regeneration and repair processes. As a result, the pathophysiological processes involving skin damage, healing, and remodeling depend critically on the control of inflammation. The fact that it is a feasible target for improving the prognosis of wound healing has lately become clear. Mesenchymal stem cells (MSCs) are an innovative and effective therapeutic option for wound healing due to their immunomodulatory and paracrine properties. By controlling the inflammatory milieu of wounds through immunomodulation, transplanted MSCs have been shown to speed up the healing process. In addition to other immunomodulatory mechanisms, including handling neutrophil activity and modifying macrophage polarization, there may be modifications to the activation of T cells, natural killer (NK) cells, and dendritic cells (DCs). Furthermore, several studies have shown that pretreating MSCs improves their ability to modulate immunity. In this review, we summarize the existing knowledge about how MSCs influence local inflammation in wounds by influencing immunity to facilitate the healing process. We also provide an overview of MSCs optimizing techniques when used to treat wounds.

4.
Animals (Basel) ; 14(4)2024 Feb 11.
Article En | MEDLINE | ID: mdl-38396559

Infections with Enterocytozoon hepatopenaei (EHP), infectious hypodermal and hematopoietic necrosis virus (IHHNV), and Decapod iridescent virus 1 (DIV1) pose significant challenges to the shrimp industry. Here, a melting curve-based triple real-time PCR assay based on the fluorescent dye Eva Green was established for the simultaneous detection of EHP, IHHNV, and DIV1. The assay showed high specificity, sensitivity, and reproducibility. A total of 190 clinical samples from Shandong, Jiangsu, Sichuan, Guangdong, and Hainan provinces in China were evaluated by the triple Eva Green real-time PCR assay. The positive rates of EHP, IHHNV, and DIV1 were 10.5%, 18.9%, and 44.2%, respectively. The samples were also evaluated by TaqMan qPCR assays for EHP, DIV1, and IHHNV, and the concordance rate was 100%. This illustrated that the newly developed triple Eva Green real-time PCR assay can provide an accurate method for the simultaneous detection of three shrimp pathogens.

5.
Antioxidants (Basel) ; 13(2)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38397831

Soil salinity is one of the adversity stresses plants face, and antioxidant defense mechanisms play an essential role in plant resistance. We investigated the effects of exogenous calcium on the antioxidant defense system in peanut seedling roots that are under salt stress by using indices including the transcriptome and absolute quantitative metabolome of flavonoids. Under salt stress conditions, the antioxidant defense capacity of enzymatic systems was weakened and the antioxidant capacity of the linked AsA-GSH cycle was effectively inhibited. In contrast, the ascorbate biosynthesis pathway and its upstream glycolysis metabolism pathway became active, which stimulated shikimate biosynthesis and the downstream phenylpropanoid metabolism pathway, resulting in an increased accumulation of flavonoids, which, as one of the antioxidants in the non-enzymatic system, provide hydroxyl radicals to scavenge the excess reactive oxygen species and maintain the plant's vital activities. However, the addition of exogenous calcium caused changes in the antioxidant defense system in the peanut root system. The activity of antioxidant enzymes and the antioxidant capacity of the AsA-GSH cycle were enhanced. Therefore, glycolysis and phenylpropanoid metabolism do not exert antioxidant function, and flavonoids were no longer synthesized. In addition, antioxidant enzymes and the AsA-GSH cycle showed a trade-off relationship with sugars and flavonoids.

6.
BMC Gastroenterol ; 24(1): 77, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38373892

BACKGROUND: Several studies have found that primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD) are closely associated. However, the direction and causality of their interactions remain unclear. Thus, this study employs Mendelian Randomization to explore whether there are causal associations of genetically predicted PSC with IBD. METHODS: Genetic variants associated with the genome-wide association study (GWAS) of PSC were used as instrumental variables. The statistics for IBD, including ulcerative colitis (UC), and Crohn's disease (CD) were derived from GWAS. Then, five methods were used to estimate the effects of genetically predicted PSC on IBD, including MR Egger, Weighted median (WM), Inverse variance weighted (IVW), Simple mode, and Weighted mode. Last, we also evaluated the pleiotropic effects, heterogeneity, and a leave-one-out sensitivity analysis that drives causal associations to confirm the validity of the analysis. RESULTS: Genetically predicted PSC was significantly associated with an increased risk of UC, according to the study (odds ratio [OR] IVW= 1.0014, P<0.05). However, none of the MR methods found significant causal evidence of genetically predicted PSC in CD (All P>0.05). The sensitivity analysis results showed that the causal effect estimations of genetically predicted PSC on IBD were robust, and there was no horizontal pleiotropy or statistical heterogeneity. CONCLUSIONS: Our study corroborated a causal association between genetically predicted PSC and UC but did not between genetically predicted PSC and CD. Then, we identification of shared SNPs for PSC and UC, including rs3184504, rs9858213, rs725613, rs10909839, and rs4147359. More animal experiments and clinical observational studies are required to further clarify the underlying mechanisms of PSC and IBD.


Cholangitis, Sclerosing , Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Animals , Cholangitis, Sclerosing/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Inflammatory Bowel Diseases/genetics , Colitis, Ulcerative/genetics , Crohn Disease/genetics
7.
Ital J Pediatr ; 50(1): 26, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38355639

BACKGROUND: Late preterm infants (LPIs) are at risk of neurodevelopmental delay. Research on their cognitive development is helpful for early intervention and follow-up. METHODS: Event-related potential (ERP) and resting electroencephalography (RS-EEG) were used to study the brain cognitive function of LPIs in the early stage of life. The Gesell Developmental Scale (GDS) was used to track the neurodevelopmental status at the age of 1 year after correction, and to explore the neurophysiological indicators that could predict the outcome of cognitive development in the early stage. RESULTS: The results showed that mismatch response (MMR) amplitude, RS-EEG power spectrum and functional connectivity all suggested that LPIs were lagging behind. At the age of 1 year after correction, high-risk LPIs showed no significant delay in gross motor function, but lagged behind in fine motor function, language, personal social interaction and adaptability. The ROC curve was used to evaluate the predictive role of MMR amplitude in the brain cognitive development prognosis at 1 year, showing a sensitivity of 80.00% and a specificity of 90.57%. The area under the curve (AUC) was 0.788, with a P-value of 0.007. CONCLUSIONS: Based on our findings we supposed that the cognitive function of LPI lags behind that of full-term infants in early life. Preterm birth and perinatal diseases or high risk factors affected brain cognitive function in LPIs. MMR amplitude can be used as an early predictor of brain cognitive development in LPIs. TRIAL REGISTRATION: This clinical trial is registered with the Chinese Clinical Trial Registry (ChiCTR). TRIAL REGISTRATION NUMBER: ChiCTR2100041929. Date of registration: 2021-01-10. URL of the trial registry record: https://www.chictr.org.cn/ .


Infant, Premature , Premature Birth , Female , Humans , Infant , Infant, Newborn , Pregnancy , Brain , Cognition , Electroencephalography , Evoked Potentials , Gestational Age
8.
Sci China Life Sci ; 67(1): 188-203, 2024 Jan.
Article En | MEDLINE | ID: mdl-37922067

Brine shrimp (Artemia) has existed on Earth for 400 million years and has major ecological importance in hypersaline ecosystems. As a crucial live food in aquaculture, brine shrimp cysts have become one of the most important aquatic products traded worldwide. However, our understanding of the biodiversity, prevalence and global connectedness of viruses in brine shrimp is still very limited. A total of 143 batches of brine shrimp (belonging to seven species) cysts were collected from six continents including 21 countries and more than 100 geographic locations worldwide during 1977-2019. In total, 55 novel RNA viruses were identified, which could be assigned to 18 different viral families and related clades. Eleven viruses were dsRNA viruses, 16 were +ssRNA viruses, and 28 were-ssRNA viruses. Phylogenetic analyses of the RNA-directed RNA polymerase (RdRp) showed that brine shrimp viruses were often grouped with viruses isolated from other invertebrates and fungi. Remarkably, most brine shrimp viruses were related to those from different hosts that might feed on brine shrimp or share the same ecological niche. A notable case was the novel brine shrimp noda-like virus 3, which shared 79.25% (RdRp) and 63.88% (capsid proteins) amino acid identity with covert mortality nodavirus (CMNV) that may cause losses in aquaculture. In addition, both virome composition and phylogenetic analyses revealed global connectedness in certain brine shrimp viruses, particularly among Asia and Northern America. This highlights the incredible species diversity of viruses in these ancient species and provides essential data for the prevalence of RNA viruses in the global aquaculture industry. More broadly, these findings provide novel insights into the previously unrecognized RNA virosphere in hypersaline ecosystems worldwide and demonstrate that human activity might have driven the global connectedness of brine shrimp viruses.


Cysts , RNA Viruses , Animals , Humans , Ecosystem , Artemia , Phylogeny , RNA Viruses/genetics , RNA-Dependent RNA Polymerase
9.
3 Biotech ; 13(12): 421, 2023 Dec.
Article En | MEDLINE | ID: mdl-38037657

In this study, metagenomic sequencing technology was employed to analyze the ITS1 region sequence of the ITS rDNA gene of endophytic fungi and 16S sequence of endophytic bacteria in tea leaves with varying degrees of infection by tea blister blight disease as well as healthy tea leaves. Subsequently, a comparative analysis was conducted on the endophytic microbial diversity and the community structure in tea leaves. The findings of this investigation reveal a shift in the dominant endophytic fungal genera from Ascomycota to Basidiomycota as the disease progressed. Furthermore, a negative correlation was observed between Exobasidium and Talaromyce, with Talaromyce exhibiting potential as an antagonist against the disease. Meanwhile, our findings reveal that Proteobacteria, Firmicutes, and Actinobacteria were the three most abundant bacteria phyla in tea leaves. As the disease progressed, there was an increase in the relative abundance of Actinobacteria, while Variovorax, Sphingomonas, and Pseudomonas were found to have higher abundance in later stages. The diversity analysis results indicated that the endophytic microbial diversity and the community structure in tea leaves in the diseased group were lower than those in the healthy control group. In general, blister blight disease altered the community structure of endophytic microorganisms in tea leaves, resulting in a few species with high abundance. The study lays a foundation for investigating the pathogenic mechanism of tea blister disease and establishing a theoretical basis for controlling diseases in tea trees.

10.
Clin Transl Med ; 13(12): e1515, 2023 12.
Article En | MEDLINE | ID: mdl-38115703

BACKGROUND: Cancer-associated fibroblasts (CAFs) are potential targets for cancer therapy. Due to the heterogeneity of CAFs, the influence of CAF subpopulations on the progression of lung cancer is still unclear, which impedes the translational advances in targeting CAFs. METHODS: We performed single-cell RNA sequencing (scRNA-seq) on tumour, paired tumour-adjacent, and normal samples from 16 non-small cell lung cancer (NSCLC) patients. CAF subpopulations were analyzed after integration with published NSCLC scRNA-seq data. SpaTial enhanced resolution omics-sequencing (Stereo-seq) was applied in tumour and tumour-adjacent samples from seven NSCLC patients to map the architecture of major cell populations in tumour microenvironment (TME). Immunohistochemistry (IHC) and multiplexed IHC (mIHC) were used to validate marker gene expression and the association of CAFs with immune infiltration in TME. RESULTS: A subcluster of myofibroblastic CAFs, POSTN+ CAFs, were significantly enriched in advanced tumours and presented gene expression signatures related to extracellular matrix remodeling, tumour invasion pathways and immune suppression. Stereo-seq and mIHC demonstrated that POSTN+ CAFs were in close localization with SPP1+ macrophages and were associated with the exhausted phenotype and lower infiltration of T cells. POSTN expression or the abundance of POSTN+ CAFs were associated with poor prognosis of NSCLC. CONCLUSIONS: Our study identified a myofibroblastic CAF subpopulation, POSTN+ CAFs, which might associate with SPP1+ macrophages to promote the formation of desmoplastic architecture and participate in immune suppression. Furthermore, we showed that POSTN+ CAFs associated with cancer progression and poor clinical outcomes and may provide new insights on the treatment of NSCLC.


Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Cancer-Associated Fibroblasts/metabolism , Lung Neoplasms/metabolism , Macrophages/metabolism , Gene Expression Profiling , Tumor Microenvironment/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism
11.
Sci Rep ; 13(1): 19855, 2023 11 13.
Article En | MEDLINE | ID: mdl-37963934

Chlorpyrifos and pyrimethanil are widely used insecticides/fungicides in agriculture. The residual pesticides/fungicides remaining in fruits and vegetables may do harm to human health if they are taken without notice by the customers. Therefore, it is important to develop methods and tools for the rapid detection of pesticides/fungicides in fruits and vegetables, which are highly demanded in the current markets. Surface-enhanced Raman spectroscopy (SERS) can achieve trace chemical detection, while it is still a challenge to apply SERS for the detection and identification of mixed pesticides/fungicides. In this work, we tried to combine SERS technique and deep learning spectral analysis for the determination of mixed chlorpyrifos and pyrimethanil on the surface of fruits including apples and strawberries. Especially, the multi-channel convolutional neural networks-gate recurrent unit (MC-CNN-GRU) classification model was used to extract sequence and spatial information in the spectra, so that the accuracy of the optimized classification model could reach 99% even when the mixture ratio of pesticide/fungicide varied considerably. This work therefore demonstrates an effective application of using SERS combined deep learning approach in the rapid detection and identification of different mixed pesticides in agricultural products.


Chlorpyrifos , Deep Learning , Fungicides, Industrial , Pesticides , Humans , Fruit/chemistry , Fungicides, Industrial/analysis , Spectrum Analysis, Raman/methods , Pesticides/analysis , Vegetables
12.
Plants (Basel) ; 12(17)2023 Aug 31.
Article En | MEDLINE | ID: mdl-37687376

High salinity severely inhibits plant seedling root development and metabolism. Although plant salt tolerance can be improved by exogenous calcium supplementation, the metabolism molecular mechanisms involved remain unclear. In this study, we integrated three types of omics data (transcriptome, metabolome, and phytohormone absolute quantification) to analyze the metabolic profiles of peanut seedling roots as regulated by exogenous calcium under salt stress. (1) exogenous calcium supplementation enhanced the allocation of carbohydrates to the TCA cycle and plant cell wall biosynthesis rather than the shikimate pathway influenced by up-regulating the gene expression of antioxidant enzymes under salt stress; (2) exogenous calcium induced further ABA accumulation under salt stress by up-regulating the gene expression of ABA biosynthesis key enzymes AAO2 and AAO3 while down-regulating ABA glycosylation enzyme UGT71C5 expression; (3) exogenous calcium supplementation under salt stress restored the trans-zeatin absolute content to unstressed levels while inhibiting the root cis-zeatin biosynthesis.

13.
Small Methods ; 7(11): e2300730, 2023 11.
Article En | MEDLINE | ID: mdl-37712212

Cell-cell interaction is one of the major modalities for transmitting information between cells and activating the effects of functional cells. However, the construction of high-throughput analysis technologies from cell omics focusing on the impact of interactions of functional cells on targets has been relatively unexplored. Here, they propose a droplet-based microfluidic platform for cell-cell interaction sequencing (c-c-seq) and screening in vitro to address this challenge. A class of interacting cells is pre-labeled using cell molecular tags, and additional single-cell sequencing reagents are introduced to quickly form functional droplet mixes. Lastly, gene expression analysis is used to deduce the impact of the interaction, while molecular sequence tracing identifies the type of interaction. Research into the active effect between antigen-presenting cells and T cells, one of the most common cell-to-cell interactions, is crucial for the advancement of cancer therapy, particularly T cell receptor-engineered T cell therapy. As it allows for high throughput, this platform is superior to well plates as a research platform for cell-to-cell interactions. When combined with the next generation of sequencing, the platform may be able to more accurately evaluate interactions between epitopes and receptors and verify their functional relevance.


Microfluidics , Transcriptome , Transcriptome/genetics , Gene Expression Profiling , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism
14.
Int J Mol Sci ; 24(16)2023 Aug 10.
Article En | MEDLINE | ID: mdl-37628842

A homogeneous egg white obtained by high-speed shearing and centrifugation was dehydrated into a fragile and water-soluble egg white glass (EWG) by unidirectional nanopore dehydration (UND). After EWG annealing, it can become an egg white hydrogel membrane (EWHM) that is water-insoluble, flexible, biocompatible, and mechanically robust. Its tensile strength, elongation at break, and the swelling ratio are about 5.84 MPa, 50-110%, and 60-130%, respectively. Protein structure analysis showed that UND caused the rearrangement of the protein molecules to form EWG with random coil and α-helix structures. The thermal decomposition temperature of the EWG was 309.25 °C. After EWG annealing at over 100 or 110 °C for 1.0 h or 45 min, the porous network EWHM was mainly composed of ß-sheet structures, and the thermal decomposition temperature increased to 317.25-318.43 °C. Their 12-day residues in five proteases ranged from 1% to 99%, and the order was pepsin > neutral protease > papain > trypsin > alkaline protease. Mouse fibroblast L929 cells can adhere, grow, and proliferate well on these EWHMs. Therefore, the combined technology of UND and annealing for green and novel processing of EWHM has potential applications in the field of biomimetic and biomedical materials.


Hydrogels , Nanopores , Animals , Mice , Dehydration , Egg White , Biocompatible Materials , Papain
15.
Front Immunol ; 14: 1202298, 2023.
Article En | MEDLINE | ID: mdl-37554330

Diabetic nephropathy (DN) is the most prevalent microvascular consequence of diabetes and has recently risen to the position of the world's second biggest cause of end-stage renal diseases. Growing studies suggest that oxidative stress (OS) responses are connected to the advancement of DN. This study aimed to developed a novel diagnostic model based on OS-related genes. The differentially expressed oxidative stress-related genes (DE-OSRGs) experiments required two human gene expression datasets, which were given by the GEO database (GSE30528 and GSE96804, respectively). The potential diagnostic genes were identified using the SVM-RFE assays and the LASSO regression model. CIBERSORT was used to determine the compositional patterns of the 22 different kinds of immune cell fraction seen in DN. These estimates were based on the combined cohorts. DN serum samples and normal samples were both subjected to RT-PCR in order to investigate the degree to which certain genes were expressed. In this study, we were able to locate 774 DE-OSRGs in DN. The three marker genes (DUSP1, PRDX6 and S100A8) were discovered via machine learning on two different machines. The high diagnostic value was validated by ROC tests, which focused on distinguishing DN samples from normal samples. The results of the CIBERSORT study suggested that DUSP1, PRDX6, and S100A8 may be associated to the alterations that occur in the immunological microenvironment of DN patients. Besides, the results of RT-PCR indicated that the expression of DUSP1, PRDX6, and S100A8 was much lower in DN serum samples compared normal serum samples. The diagnostic value of the proposed model was likewise verified in our cohort, with an area under the curve of 9.946. Overall, DUSP1, PRDX6, and S100A8 were identified to be the three diagnostic characteristic genes of DN. It's possible that combining these genes will be effective in diagnosing DN and determining the extent of immune cell infiltration.


Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/genetics , Algorithms , Biological Assay , Calgranulin A , Machine Learning , Oxidative Stress/genetics
16.
Sci Total Environ ; 903: 166159, 2023 Dec 10.
Article En | MEDLINE | ID: mdl-37572910

Controlling ammonia nitrogen is very important in intensive aquaculture. This study evaluated how different management strategies, i.e., chemoautotrophic (control), heterotrophic bacterial enhancement using carbon in glucose or polyhydroxy butyrate-hydroxy valerate (PHBV), and mature biofloc application, affect water quality and microbial community structure and composition. The management strategies were examined during the domestication and fish culture stages. In the domestication stage, the average NO2--N concentration, pH, and DO in the glucose-added groups were significantly lower than those in the control and PHBV groups. All water quality parameters differed significantly among treatment groups in the culture stage. Carbon additions decreased both bacterial richness and diversity in the fish culture stage. Both principal coordinate analysis and hierarchical cluster analysis grouped the 33 bacteria community samples from the two stages into four clusters, which were closely related to management strategy. The dominant taxa of the clusters were identified using linear discriminant analysis effect size (LEfSe). The biomarkers of Cluster I included Marinomonas, Photobacterium, and Vibrio. Porticoccus and Clade-1a were identified as the biomarkers of Cluster II. Marivia, Leucothrix, and Phaeodactylibacter were identified as the biomarkers of Cluster IV. The Cluster I biomarkers were positively correlated with NO2--N, while those of Cluster IV were positively correlated with NO3--N. The redundancy analysis showed that the bacterial communities and biomarkers were influenced by water quality parameters. Quantitative real-time PCR analysis revealed significant differences in the abundances of the amoA and nxrB genes among treatments and between the two stages. The abundance of the amoA gene was higher in the control group than in the carton-added treatments at the ends of both stages. This study provides an important theoretical basis for the selection of efficient ammonia nitrogen control strategies in aquaculture systems.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123018, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37392534

Controlling the supramolecular chirality of a self-assembly system by molecular structure design and external stimuli in aqueous solution is significant but challenging. Here, we design and synthesize several glutamide-azobenzene-based amphiphiles with different length alkyl chains. The amphiphiles can form self-assemblies in aqueous solution and show CD signals. As the number of the alkyl chain of amphiphiles increases, the CD signals of the assemblies can be enhanced. However, the long alkyl chains conversely restrict the isomerization of the azobenzene and the corresponding chiroptical property. Moreover, the alkyl length can determine the nanostructure of the assemblies and exert critical influence on the dye adsorption efficiency. This work exhibits some insights into the tunable chiroptical property of the self-assembly by delicate molecular design and external stimuli, and emphasizes the molecular structure can determine the corresponding application.

18.
Anal Chem ; 95(25): 9697-9705, 2023 06 27.
Article En | MEDLINE | ID: mdl-37300490

T-cell receptor (TCR)-engineered T cells can precisely recognize a broad repertoire of targets derived from both intracellular and surface proteins of tumor cells. TCR-T adoptive cell therapy has shown safety and promising efficacy in solid tumor immunotherapy. However, antigen-specific functional TCR screening is time-consuming and expensive, which limits its application clinically. Here, we developed a novel integrated antigen-TCR screening platform based on droplet microfluidic technology, enabling high-throughput peptide-major histocompatibility complex (pMHC)-to-TCR paired screening with a high sensitivity and low background signal. We introduced DNA barcoding technology to label peptide antigen candidate-loaded antigen-presenting cells and Jurkat reporter cells to check the specificity of pMHC-TCR candidates. Coupled with the next-generation sequencing pipeline, interpretation of the DNA barcodes and the gene expression level of the Jurkat T-cell activation pathway provided a clear peptide-MHC-TCR recognition relationship. Our proof-of-principle study demonstrates that the platform could achieve pMHC-TCR paired high-throughput screening, which is expected to be used in the cross-reactivity and off-target high-throughput paired testing of candidate pMHC-TCRs in clinical applications.


High-Throughput Screening Assays , Microfluidics , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Antigens , Peptides/metabolism
19.
Molecules ; 28(9)2023 May 04.
Article En | MEDLINE | ID: mdl-37175284

To investigate the flavor changes in goat meat upon storage, the volatile components observed in goat meat after different storage periods were determined using gas chromatography-ion mobility spectrometry (GC-IMS). A total of 38 volatile organic compounds (VOCs) were determined from the goat meat samples, including alcohols, ketones, aldehydes, esters, hydrocarbons, ethers, and amine compounds. 1-Hexanol, 3-Hydroxy-2-butanone, and Ethyl Acetate were the main volatile substances in fresh goat meat, and they rapidly decreased with increasing storage time and can be used as biomarkers for identifying fresh meat. When combined with the contents of total volatile basic-nitrogen (TVB-N) and the total numbers of bacterial colonies observed in physical and chemical experiments, the characteristic volatile components of fresh, sub-fresh, and spoiled meat were determined by principal component analysis (PCA). This method will help with the detection of fraudulent production dates in goat meat sales.


Ion Mobility Spectrometry , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Ion Mobility Spectrometry/methods , Alcohols/analysis , Aldehydes/analysis , Meat/analysis , Volatile Organic Compounds/analysis
20.
Polymers (Basel) ; 15(9)2023 Apr 27.
Article En | MEDLINE | ID: mdl-37177218

High-quality and free-standing polyimide (PI) film with desirable mechanical properties and uniformity is in high demand due to its widespread applications in highly precise flexible and chip-integrated sensors. In this study, a free-standing PI film with high toughness was successfully prepared using a diamine monomer with ether linkages. The prepared PI films exhibited significantly superior mechanical properties compared to PI films of the same molecular structure, which can be attributed to the systematic exploration of the film-forming process. The exploration of the film-forming process includes the curing procedures, film-forming substrates, and annealing treatments. Additionally, the thickness uniformity and surface homogeneity of free-standing films were crucial for toughness. Increasing the crystallinity of the PI films by eliminating residual stress also contributed to their high strength. The results demonstrate that by adjusting the above-mentioned factors, the prepared PI films possess excellent mechanical properties, with tensile strength and elongation at break of 194.71 MPa and 130.13%, respectively.

...