Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Anim Nutr ; 9: 74-83, 2022 Jun.
Article En | MEDLINE | ID: mdl-35949984

No information is available regarding the utilization of iron (Fe) from different Fe sources at a target tissue level. To detect differences in Fe metabolic utilization among Fe sources, the effect of intravenously injected Fe on growth performance, hematological indices, tissue Fe concentrations and Fe-containing enzyme activities and gene expressions of Fe-containing enzymes or protein in broilers was investigated. On d 22 post-hatching, a total of 432 male chickens were randomly allotted to 1 of 9 treatments in a completely randomized design. Chickens were injected with either a 0.9% (wt/vol) NaCl solution (control) or a 0.9% NaCl solution supplemented with Fe sulphate or 1 of 3 organic Fe sources. The 3 organic Fe sources were Fe chelates with weak (Fe-MetW), moderate (Fe-ProtM) or extremely strong (Fe-ProtES) chelation strength. The 2 Fe dosages were calculated according to the Fe absorbabilities of 10% and 20% every 2 d for a duration of 20 d. Iron injection did not affect (P > 0.05) ADFI, ADG or FCR during either 1 to 10 d or 11 to 20 d after injections. Hematocrit and Fe concentrations in the liver and kidney on d 10 after Fe injections, and Fe concentrations in the liver or pancreas and ferritin heavy-chain (FTH1) protein expression level in the liver or spleen on d 20 after Fe injections increased (P ≤ 0.05) as injected Fe dosages increased. When the injected Fe level was high at 20% Fe absorbability, the chickens injected with Fe-ProtES had lower (P < 0.001) liver or kidney Fe concentrations and spleen FTH1 protein levels than those injected with Fe-MetW or Fe-ProtM on d 20 after injections. And they had lower (P < 0.05) liver cytochrome C oxidase mRNA levels on d 20 after injections than those injected with Fe-MetW or Fe sulphate. The results from this study indicate that intravenously injected Fe from Fe-ProtES was the least utilizable and functioned in the sensitive target tissue less effectively than Fe from Fe sulfate, Fe-MetW or Fe-ProtM.

2.
J BioX Res ; 5(4): 181-196, 2022 Dec.
Article En | MEDLINE | ID: mdl-36618771

To explore the antitumor and potential off-target effects of systemically delivered cholesterol-conjugated let-7a mimics (Chol-let-7a) and control mimics (Chol-miRCtrl) on hepatocellular carcinoma in vivo. Methods: The antitumor effects of two intravenous dosing regimens of Chol-let-7a on heptocellular carcinoma growth were compared using an orthotopic xenograft mouse model. Off-targets were analyzed with histopathological and ultrapathological features of heparenal tissue and cells in the Chol-let-7a-, Chol-miRCtrl-, and saline-treated (blank) xenograft mice and normal control mice. Then, let-7a abundance in orthotopic tumors, corresponding paracancerous hepatic tissue, and normal liver tissue from healthy nude mice was examined by reverse transcription-polymerase chain reaction. The distribution of Chol-let-7a and Chol-miRCtrl in vivo was examined by whole-animal imaging and frozen-sections observation. The experiments were approved by the Institutional Research Board of Peking Union Medical College Hospital. Results: Continuous treatment with Chol-let-7a resulted in tumors that were 35.86% and 40.02% the size of those in the Chol-miRCtrl and blank xenograft group (P < 0.01 and P < 0.01, respectively), while intermittent dosing with Chol-let-7a resulted in tumors that were 65.42% and 56.66% the size of those in the Chol-miRCtrl and the blank control group, respectively (P < 0.05 and P < 0.05). In addition, some histopathological and ultrapathological features were only observed after treatment with the two cholesterol-conjugated molecules, however mild with intermittent dosing Chol-let-7a treatment, such as diffuse sinusoidal dilation and edema, primarily around the centrolobular vein in heptic tissues; mild hypercellularity with dilated capillary lumens in the renal tissue; and some organelle abnormalities found in heptic and renal cells. Furthermore, whole-animal imaging showed that Chol-let-7a and Chol-miRCtrl were predominantly distributed in the liver, kidney, and bladder regions after injection, and that the concentration of Chol-let-7a and Chol-miRCtrl in the kidney and the bladder decreased much slowly in the xenograft animals, especially in the Chol-miRCtrl group. Finally, RT-PCR analysis showed that let-7a levels were significantly increased in Chol-let-7a-treated xenografts compared with Chol-miRCtrl group (P=0.003) and blank xenograft group (P=0.001); however, the level was only equivalent to 50.6% and 40.7% of that in paracancerous hepatic tissue and hepatic tissue in normal mice, respectively. Conclusions: Chol-let-7a, administered either continuously or intermittently, showed effective antitumor efficacy. Chol-let-7a had some off-target effects, such as mild acute hepatitis-like inflammation and non-specific drug-induced kidney injury. The intermittent dosing regimen resulted in less damage than the continuous regimen, while maintaining relatively satisfactory antitumor efficacy, which could be useful for the investigation and possible clinical use of miRNA treatment regimens in the future.

3.
Biomed Pharmacother ; 137: 111392, 2021 May.
Article En | MEDLINE | ID: mdl-33761609

Inflammation and oxidative stress play a significant role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Ethyl pyruvate (EP) is a novel anti-inflammatory agent and a potent reactive oxygen species (ROS) scavenger. Therefore, EP supplemented in drinking water may alleviate experimental NASH in this study (even though 0.3% of EP cannot attenuate the simple non-aggressive fatty liver). The methionine-choline-deficient (MCD) diet was given to the C57BL/6 male mice for 3 weeks to induce NASH. The NASH animals were randomized into 3 treatment groups: animals in the MCD alone group were treated with normal drinking water alone; animals in the delayed EP group were given 3% (v/v) of EP supplemented in normal drinking water, the treatment started 10 days after MCD diet feeding; animals in the early EP therapy group were treated the same as the delayed EP group except that EP treatment started the same day when MCD diet was given; the control mice were fed with normal chow and treated with normal drinking water (n = 10 for each group). Compared to MCD group with normal drinking water, early EP treatment significantly decreased serum ALT and improved NASH histopathology; delayed EP therapy only attenuated NASH in 50% (5/10) of the animals. The beneficial effects were associated with decreased hepatic TNF-a and IL-6 mRNA expression on early 5 days, inhibited NF-kB activation, reduced liver tissue malondialdehyde levels, and decreased intestinal bacterial translocation (BT). In conclusion: EP supplemented in drinking water attenuates experimental NASH.


Antioxidants/therapeutic use , Drinking Water , Non-alcoholic Fatty Liver Disease/drug therapy , Pyruvates/therapeutic use , Animals , Antioxidants/administration & dosage , Bacterial Translocation , Diet , Interleukin-6/biosynthesis , Liver/metabolism , Liver/pathology , Liver Function Tests , Male , Malondialdehyde/metabolism , Methionine/deficiency , Mice , Mice, Inbred C57BL , NF-kappa B/drug effects , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress/drug effects , Pyruvates/administration & dosage , Tumor Necrosis Factor-alpha/metabolism
4.
J Biol Chem ; 290(51): 30607-15, 2015 Dec 18.
Article En | MEDLINE | ID: mdl-26504089

Dysregulation of hepatic gluconeogenesis contributes to the pathogenesis of diabetes, yet the detailed molecular mechanisms remain to be fully elucidated. Here we show that FOXP1, a transcriptional repressor, plays a key role in the regulation of systemic glucose homeostasis. Hepatic expression levels of FOXP1 are decreased in diabetic mice. Modest hepatic overexpression of FOXP1 in mice inhibited the expression of gluconeogenic genes, such as peroxisome proliferators-activated receptor γ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC), leading to a decrease in hepatic glucose production and fasting blood glucose levels in normal mice and different mouse models of diabetes, including db/db diabetic and high-fat diet-induced obese mice. FOXP1 physically interacted with FOXO1 in vivo and competed with FOXO1 for binding to the insulin response element in the promoter region of gluconeogenic genes, thereby interfering expression of these genes. These results identify a previously unrecognized role for FOXP1 in the transcriptional control of hepatic glucose homeostasis.


Forkhead Transcription Factors/metabolism , Gluconeogenesis , Glucose/metabolism , Homeostasis , Liver/metabolism , Repressor Proteins/metabolism , Animals , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Forkhead Transcription Factors/genetics , Glucose/genetics , Male , Mice , Mice, Obese , Obesity/chemically induced , Obesity/genetics , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphoenolpyruvate Carboxykinase (GTP) , Repressor Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
J Biol Chem ; 289(34): 23332-42, 2014 Aug 22.
Article En | MEDLINE | ID: mdl-24993831

Hepatic steatosis, characterized by ectopic hepatic triglyceride accumulation, is considered as the early manifestation of non-alcoholic fatty liver diseases (NAFLD). Increased SREBP-1c level and activity contribute to excessive hepatic triglyceride accumulation in NAFLD patients; however, negative regulators of Srebp-1c are not well defined. In this study, we show that Dec1, a critical regulator of circadian rhythm, negatively regulates hepatic Srebp-1c expression. Hepatic Dec1 expression levels are markedly decreased in NAFLD mouse models. Restored Dec1 gene expression levels in NAFLD mouse livers decreased the expression of Srebp-1c and lipogenic genes, subsequently ameliorating the fatty liver phenotype. Conversely, knockdown of Dec1 expression by an adenovirus expressing Dec1-specific shRNA led to an increase in hepatic TG content in normal mouse livers. Correspondingly, expression levels of lipogenic genes, including Srebp-1c, Fas, and Acc, were increased in livers of mice with Dec1 knockdown. Moreover, a functional lipogenesis assay suggested that Dec1 overexpression repressed lipid synthesis in primary hepatocytes. Finally, a luciferase reporter gene assay indicates that DEC1 inhibits Srebp-1c gene transcription via the E-box mapped to the promoter region. Chromatin immunoprecipitation confirmed that DEC1 proteins bound to the identified E-box element. Our studies indicate that DEC1 is an important regulator of Srebp-1c expression and links circadian rhythm to hepatic lipogenesis. Activation of Dec1 can alleviate the nonalcoholic fatty liver phenotype.


Basic Helix-Loop-Helix Transcription Factors/physiology , Homeodomain Proteins/physiology , Liver/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Chromatin Immunoprecipitation , DNA Primers , Gene Knockdown Techniques , Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Polymerase Chain Reaction , Promoter Regions, Genetic , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/metabolism
...