Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 250
1.
J Health Popul Nutr ; 43(1): 59, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711145

BACKGROUND: Choline, an indispensable nutrient, plays a pivotal role in various physiological processes. The available evidence regarding the nexus between dietary choline intake and health outcomes, encompassing cardiovascular disease (CVD), cancer, and all-cause mortality, is limited and inconclusive. This study aimed to comprehensively explore the relationship between dietary choline intake and the aforementioned health outcomes in adults aged > 20 years in the U.S. METHODS: This study utilized data from the National Health and Nutrition Examination Survey between 2011 and 2018. Dietary choline intake was evaluated using two 24-h dietary recall interviews. CVD and cancer status were determined through a combination of standardized medical status questionnaires and self-reported physician diagnoses. Mortality data were gathered from publicly available longitudinal Medicare and mortality records. The study utilized survey-weighted logistic and Cox regression analyses to explore the associations between choline consumption and health outcomes. Restricted cubic spline (RCS) analysis was used for dose‒response estimation and for testing for nonlinear associations. RESULTS: In our study of 14,289 participants (mean age 48.08 years, 47.71% male), compared with those in the lowest quintile (Q1), the adjusted odds ratios (ORs) of CVD risk in the fourth (Q4) and fifth (Q5) quintiles of choline intake were 0.70 (95% CI 0.52, 0.95) and 0.65 (95% CI 0.47, 0.90), respectively (p for trend = 0.017). Each 100 mg increase in choline intake was associated with a 9% reduced risk of CVD. RCS analysis revealed a linear correlation between choline intake and CVD risk. Moderate choline intake (Q3) was associated with a reduced risk of mortality, with an HR of 0.75 (95% CI 0.60-0.94) compared with Q1. RCS analysis demonstrated a significant nonlinear association between choline intake and all-cause mortality (P for nonlinearity = 0.025). The overall cancer prevalence association was nonsignificant, except for colon cancer, where each 100 mg increase in choline intake indicated a 23% reduced risk. CONCLUSION: Elevated choline intake demonstrates an inverse association with CVD and colon cancer, while moderate consumption exhibits a correlated reduction in mortality. Additional comprehensive investigations are warranted to elucidate the broader health implications of choline.


Cardiovascular Diseases , Choline , Diet , Neoplasms , Nutrition Surveys , Humans , Choline/administration & dosage , Male , Female , Cardiovascular Diseases/mortality , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Middle Aged , United States/epidemiology , Neoplasms/mortality , Neoplasms/epidemiology , Adult , Prevalence , Diet/statistics & numerical data , Aged , Mortality , Cause of Death
2.
Int Immunopharmacol ; 132: 111996, 2024 May 10.
Article En | MEDLINE | ID: mdl-38579563

BACKGROUND: MiR-107 is reduced in sepsis and associated with inflammation regulation. Dietary supplementation with polyunsaturated fatty acids (ω3-PUFA) can increase the expression of miR-107; this study investigated whether the ω3-PUFA can effectively inhibit neuroinflammation and improve cognitive function by regulating miR-107 in the brain. METHODS: The LPS-induced mouse model of neuroinflammation and the BV2 cell inflammatory model were used to evaluate the effects of ω3-PUFA on miR-107 expression and inflammation. Intraventricular injection of Agomir and Antagomir was used to modulate miR-107 expression. HE and Nissl staining for analyzing hippocampal neuronal damage, immunofluorescence analysis for glial activation, RT-qPCR, and Western blot were conducted to examine miR-107 expression and inflammation signalling. RESULTS: The result shows that LPS successfully induced the mouse neuroinflammation model and BV2 cell inflammation model. Supplementation of ω3-PUFA effectively reduced the secretion of pro-inflammatory factors TNFα, IL1ß, and IL6 induced by LPS, improved cognitive function impairment, and increased miR-107 expression in the brain. Overexpression of miR-107 in the brain inhibited the nuclear factor κB (NFκB) pro-inflammatory signalling pathway by targeting PIEZO1, thus suppressing microglial and astrocyte activation and reducing the release of inflammatory mediators, which alleviated neuroinflammatory damage and improved cognitive function in mice. miR-107, as an intron of PANK1, PANK1 is subject to PPAR α Adjust. ω3-PUFA can activate PPARα, but ω3-PUFA upregulates brain miR-107, and PPARα/PANK1-related pathways may not be synchronized, and further research is needed to confirm the specific mechanism by which ω3-PUFA upregulates miR-107. CONCLUSION: The miR-107/PIEZO1/NFκB p65 pathway represents a novel mechanism underlying the improvement of neuroinflammation by ω3-PUFA.


Fatty Acids, Omega-3 , Lipopolysaccharides , Mice, Inbred C57BL , MicroRNAs , Transcription Factor RelA , Up-Regulation , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Male , Transcription Factor RelA/metabolism , Up-Regulation/drug effects , Cell Line , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Signal Transduction/drug effects , Disease Models, Animal , Cytokines/metabolism , Microglia/drug effects , Microglia/metabolism , Hippocampus/metabolism , Hippocampus/drug effects
3.
Molecules ; 29(5)2024 Mar 03.
Article En | MEDLINE | ID: mdl-38474644

During the life activities of microorganisms, a variety of secondary metabolites are produced, including antimicrobials and antitumor drugs, which are widely used in clinical practice. In addition to exploring new antibiotics, this makes it one of the research priorities of Actinomycetes to effectively increase the yield of antibiotics in production strains by various means. Most antibiotic-producing strains have a variety of functional regulatory factors that regulate their growth, development, and secondary metabolite biosynthesis processes. Through the study of precursor substances in antibiotic biosynthesis, researchers have revealed the precursor biosynthesis process and the mechanism by which precursor synthesis regulators affect the biosynthesis of secondary metabolites, which can be used to obtain engineered strains with high antibiotic production. This paper summarizes the supply of antibiotic biosynthesis precursors and the progress of research on the role of regulators in the process of precursors in biosynthesis. This lays the foundation for the establishment of effective breeding methods to improve antibiotic yields through the manipulation of precursor synthesis genes and related regulators.


Actinobacteria , Anti-Bacterial Agents , Anti-Bacterial Agents/metabolism , Actinobacteria/metabolism , Actinomyces , Secondary Metabolism
4.
Aging (Albany NY) ; 16(3): 2989-3006, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38329438

BACKGROUND: Growing experimental evidence indicates that cognitive impairment is linked to neuroinflammation. Minocycline (MINO), an antibiotic known for its anti-inflammatory, has shown promise in alleviating cognitive impairment. Nonetheless, the exact mechanism through which MINO improves cognitive impairment is not yet understood. METHODS: A neuroinflammatory model was establish by utilizing lipopolysaccharide. The assessment of mice's cognitive and learning abilities was conducted through the MWM and Y-maze tests. The evaluation of hippocampal neuronal injury and microglial activation were achieved by performing HE staining and IHC, respectively. To evaluate BV2 cell viability and apoptosis, the CCK-8 and Hoechst 33342/PI staining assays were employed. In order to assess the protein and RNA expression levels of NLRP3, caspase-1, IL-1ß, IL-18, Iba-1, and Bcl2/Bax, WB and RT-qPCR were utilized. Additionally, the inhibitory effect of MINO on apoptosis by targeting the NLRP3/caspase-1 pathway was investigated using Nigericin. RESULTS: MINO was effective in reducing the time it took for mice to escape from the test, increasing the number of platforms they crossed, and mitigating damage to the hippocampus while also suppressing microglial activation and the expression of Iba-1 in a neuroinflammatory model caused by LPS. Furthermore, MINO improved the viability of BV2 cell and reduced apoptosis. It also had the effect of reducing the expression levels of NLRP3/Caspase-1, IL-1ß, IL-18, and BAX, while upregulating the expression of Bcl2. Additionally, MINO was found to downregulate the NLRP3 expression, which is specifically activated by nigericin. CONCLUSION: The protective effect of MINO relies on the crucial involvement of the NLRP3/caspase-1 pathway.


Cognitive Dysfunction , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/toxicity , Minocycline/pharmacology , Minocycline/therapeutic use , Interleukin-18 , Caspase 1/metabolism , Nigericin , bcl-2-Associated X Protein , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism
5.
Biochem Pharmacol ; 222: 116050, 2024 Apr.
Article En | MEDLINE | ID: mdl-38354960

The side effects of high-dose dexamethasone in anti-infection include increased ROS production and immune cell apoptosis. Dexamethasone effectively activates serum/glucocorticoid-regulated kinase 1 (SGK1), which upregulates various ion channels by activating store-operated calcium entry (SOCE), leading to Ca2+ oscillations. PIEZO1 plays a crucial role in macrophages' immune activity and function, but whether dexamethasone can regulate PIEZO1 by enhancing SOCE via SGK1 activation remains unclear. The effects of dexamethasone were assessed in a mouse model of sepsis, and primary BMDMs and the RAW264.7 were treated with overexpression plasmids, siRNAs, or specific activators or inhibitors to examine the relationships between SGK1, SOCE, and PIEZO1. The functional and phenotypic changes of mouse and macrophage models were detected. The results indicate that high-dose dexamethasone upregulated SGK1 by activating the macrophage glucocorticoid receptor, which enhanced SOCE and subsequently activated PIEZO1. Activation of PIEZO1 resulted in Ca2+ influx and cytoskeletal remodelling. The increase in intracellular Ca2+ mediated by PIEZO1 further increased the activation of SGK1 and ORAI1/STIM1, leading to intracellular Ca2+ peaks. In the context of inflammation, activation of PIEZO1 suppressed the activation of TLR4/NFκB p65 in macrophages. In RAW264.7 cells, PIEZO1 continuous activation inhibited the change in mitochondrial membrane potential, accelerated ROS accumulation, and induced autophagic damage and cell apoptosis in the late stage. CaMK2α was identified as a downstream mediator of TLR4 and PIEZO1, facilitating high-dose dexamethasone-induced macrophage immunosuppression and apoptosis. PIEZO1 is a new glucocorticoid target to regulate macrophage function and activity. This study provides a theoretical basis for the rational use of dexamethasone.


Glucocorticoids , Protein Serine-Threonine Kinases , Humans , Glucocorticoids/pharmacology , Reactive Oxygen Species/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Toll-Like Receptor 4/metabolism , Macrophages/metabolism , Apoptosis , Inflammation , Dexamethasone/pharmacology , Calcium/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Ion Channels/genetics
6.
Nat Commun ; 15(1): 950, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38296939

The CRISPR-Cas9 system offers substantial potential for cancer therapy by enabling precise manipulation of key genes involved in tumorigenesis and immune response. Despite its promise, the system faces critical challenges, including the preservation of cell viability post-editing and ensuring safe in vivo delivery. To address these issues, this study develops an in vivo CRISPR-Cas9 system targeting tumor-associated macrophages (TAMs). We employ bacterial protoplast-derived nanovesicles (NVs) modified with pH-responsive PEG-conjugated phospholipid derivatives and galactosamine-conjugated phospholipid derivatives tailored for TAM targeting. Utilizing plasmid-transformed E. coli protoplasts as production platforms, we successfully load NVs with two key components: a Cas9-sgRNA ribonucleoprotein targeting Pik3cg, a pivotal molecular switch of macrophage polarization, and bacterial CpG-rich DNA fragments, acting as potent TLR9 ligands. This NV-based, self-assembly approach shows promise for scalable clinical production. Our strategy remodels the tumor microenvironment by stabilizing an M1-like phenotype in TAMs, thus inhibiting tumor growth in female mice. This in vivo CRISPR-Cas9 technology opens avenues for cancer immunotherapy, overcoming challenges related to cell viability and safe, precise in vivo delivery.


CRISPR-Cas Systems , Neoplasms , Female , Mice , Animals , CRISPR-Cas Systems/genetics , Protoplasts , RNA, Guide, CRISPR-Cas Systems , Tumor-Associated Macrophages , Escherichia coli/genetics , Neoplasms/genetics , Neoplasms/therapy , Immunotherapy , Phospholipids , Tumor Microenvironment
7.
Nat Commun ; 15(1): 526, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38228630

The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.


Ear, Inner , Hair Cells, Auditory, Inner , Animals , Mice , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory/metabolism , Stereocilia/metabolism , Ear, Inner/metabolism , Hearing , Mechanotransduction, Cellular , Mammals/metabolism , Ion Channels/genetics , Ion Channels/metabolism
8.
Aging Dis ; 15(2): 480-502, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37548933

The gut-brain axis is a communication channel that mediates a complex interplay of intestinal flora with the neural, endocrine, and immune systems, linking gut and brain functions. Gut metabolites, a group of small molecules produced or consumed by biochemical processes in the gut, are involved in central nervous system regulation via the highly interconnected gut-brain axis affecting microglia indirectly by influencing the structure of the gut-brain axis or directly affecting microglia function and activity. Accordingly, pathological changes in the central nervous system are connected with changes in intestinal metabolite levels as well as altered microglia function and activity, which may contribute to the pathological process of each neuroinflammatory condition. Here, we discuss the mechanisms by which gut metabolites, for instance, the bile acids, short-chain fatty acids, and tryptophan metabolites, regulate the structure of each component of the gut-brain axis, and explore the important roles of gut metabolites in the central nervous system from the perspective of microglia. At the same time, we highlight the roles of gut metabolites affecting microglia in the pathogenesis of neurodegenerative diseases and neurodevelopmental disorders. Understanding the relationship between microglia, gut microbiota, neuroinflammation, and neurodevelopmental disorders will help us identify new strategies for treating neuropsychiatric disorders.


Gastrointestinal Microbiome , Neurodegenerative Diseases , Humans , Brain-Gut Axis , Microglia , Brain/metabolism , Neurodegenerative Diseases/metabolism , Gastrointestinal Microbiome/physiology
9.
Mol Cancer Ther ; 23(2): 148-158, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37988561

Interleukin 35(IL-35) is a newly discovered inhibitory cytokine of the IL12 family. More recently, IL-35 was found to be increased in the tumor microenvironment (TME) and peripheral blood of many patients with cancer, indicating that it plays an important role in the TME. Tumors secrete cytokines that recruit myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) into the TME to promote malignant progression, which is a great challenge for cancer treatment. Radiotherapy causes serious adverse effects, and tumor resistance to immune checkpoint inhibitors is still an unsolved challenge. Thus, new cancer therapy approaches are urgently needed. Numerous studies have shown that IL-35 can recruit immunosuppressive cells to enable tumor immune escape by promoting the conversion of immune cells into a tumor growth-promoting phenotype as well as facilitating tumor angiogenesis. IL-35-neutralizing antibodies were found to boost the chemotherapeutic effect of gemcitabine and considerably reduce the microvascular density of pancreatic cancer in mice. Therefore, targeting IL-35 in the TME provides a promising cancer treatment target. In addition, IL-35 may be used as an independent prognostic factor for some tumors in the near future. This review intends to reveal the interplay of IL-35 with immune cells in the TME, which may provide new options for the treatment of cancer.


Neoplasms , Pancreatic Neoplasms , Humans , Mice , Animals , Tumor Microenvironment , Immunotherapy , Neoplasms/drug therapy , Cytokines/pharmacology , Interleukins
10.
Mol Neurobiol ; 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37940779

Alzheimer's disease (AD) is a major cause of age-related dementia, which is becoming a global health crisis. However, the pathogenesis and etiology of AD are still not fully understood. And there are no valid treatment methods or precise diagnostic tools for AD. There is increasing evidence that P2X7R expression is upregulated in AD and is involved in multiple related pathological processes such as Aß plaques, neurogenic fiber tangles, oxidative stress, and chronic neuroinflammation. This suggests that P2X7R may be a key player in the development of AD. P2X7R is a member of the ligand-gated purinergic receptor (P2X) family. It has received attention in neuroscience due to its role in a wide range of aging and age-related neurological disorders. In this review, we summarize current information on the roles of P2X7R in AD and suggest potential pharmacological interventions to slow down AD progression.

11.
Int Microbiol ; 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37946011

Various approaches have been used to study the relationship between prebiotics and probiotics. The utilization of different carbohydrates by probiotics depends on the biochemical properties of the enzymes and substrates required by the microbial strain. However, few studies have systematically analyzed the ability of probiotics to utilize different prebiotics. Here, we investigated the effects of prebiotics from different manufacturers on the proliferation of 13 strains of the Lactobacillus group and the genus Bifidobacterium co-cultured in vitro. Inulin, fructose-oligosaccharide (FOS), and galactose-oligosaccharide (GOS) had broad growth-promoting effects. FOS significantly promoted the proliferation of B. longum. When strains from Lactobacillus group and Bifidobacterium were co-cultured, FOS caused each strain to proliferate cooperatively. GOS was effectively used by L. rhamnosus and L. reuteri for energy and growth promotion. L. casei and L. paracasei fully metabolized inulin; these strains performed better than other strains from Lactobacillus group and Bifidobacterium. Media containing a mixture of oligosaccharides had stronger effects on the growth of B. animalis subsp. lactis, L. acidophilus, and L. rhamnosus than media containing single oligosaccharides. Thus, different oligosaccharides had different effects on the growth of probiotics, providing a scientific basis for the use of synbiotics in health and related fields.

12.
PLoS One ; 18(11): e0294728, 2023.
Article En | MEDLINE | ID: mdl-38015836

The dual three-phase Permanent Magnet Synchronous Motor (PMSM) control system is characterized by its high reliability, slight torque fluctuation and low harmonic content. It is very suitable for systems requiring high power output and high reliability, for instance, electric vehicles, aerospace and military equipment. In this paper, a full speed domain sensorless control technology for dual three-phase PMSM is proposed which solves the limitations of other sensorless controls, improves system accuracy and stability, and has high practicality in fields such as new energy vehicles. The mathematical model of this motor in a static coordinate system is established, and the sine and cosine signals along with the velocity and angle information are obtained by using the flux linkage observer. Moreover, the estimated angle error parameter is introduced into the flux linkage observer; as a result, the estimation accuracy is improved by the estimated speed feedback, and the current frequency is tracked by the stator current Frequency-Variable Tracker (FVT) to reduce the current error. Meanwhile, to make the observer's estimation more accurate and to improve its ability to resist disturbance, a rotor disturbance is added to act as a disturbance variable. Through the mechanical motion equation of the motor, a fourth-order Extended State Observer (ESO) is built to calculate the rotor position and speed. Finally, the technology accuracy is verified using simulation and experimental results. The findings prove that the sensorless detection technology, with speed feedback introduce in this paper, has good reliability and high precision for dual three-phase PMSM under dynamic and static conditions.


Coleoptera , Animals , Feedback , Reproducibility of Results , Computer Simulation , Electricity
13.
J Appl Microbiol ; 134(11)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37930723

BACKGROUND: Alcoholic liver disease (ALD) is a chronic liver injury caused by excessive alcohol consumption, could be impacted by gut-liver axis dysfunction. The gut microbiota plays a crucial role in the development and progression of ALD. Given the role of gut-liver axis dysfunction in ALD, strategies targeting gut microbiota modulation have gained interest for therapeutic interventions. Bifidobacterium longum subsp. longum BL21 has shown promise in alleviating gut microbiota disturbances and metabolic regulation in high-fat diet-induced obesity and type 2 diabetes mellitus models. Thus, this study aimed to evaluate the therapeutic effect of BL21 on ALD mice and explore the potential mechanism by which the gut microbiota mediates the amelioration of ALD by BL21. METHODS: A total of 30 mice were randomly assigned to three groups (n = 10 mice/group): a healthy control (CTL) group, an ALD group, and a BL21 group. Each group was fed a Lieber-DeCarli liquid diet with (ALD and BL21) or without alcohol (CTL). The intervention period lasted 6 weeks, after which the effects of BL21 intervention (intragastric administration of 1 billion CFU of BL21 daily) on serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, hepatic oxidative stress, serum inflammatory cytokine levels, and gut microbiota composition in ALD mice were investigated. RESULTS: Dietary BL21 reduced the ethanol-induced abnormal elevation of serum AST and ALT levels in ALD mice (P < 0.001 for both). BL21 treatment significantly attenuated alcohol-induced hepatic oxidative stress by decreasing malondialdehyde concentration and increasing superoxide dismutase, catalase, and glutathione concentrations in the livers of ALD mice. In addition, the serum levels of tumor necrosis factor-alpha, interleukin-1 beta (IL-1ß), and IL-6 were significantly lower (P < 0.001 for both), while that of IL-10 was significantly higher (P < 0.05), in the BL21 group than in the ALD group. Intestinal microbiota analysis showed an increased relative abundance of Escherichia/Shigella, Enterococcus, and Alistipes in the ALD group compared with the CTL group. BL21 intervention increased the relative abundance of Bifidobacterium and Akkermansia compared with the ALD group. CONCLUSION: Dietary BL21 ameliorates ALD via enhancement of the hepatic antioxidant capacity and modulation of the gut microbiota and may therefore be a promising strategy to prevent or treat ALD.


Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Mice , Animals , Antioxidants/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/microbiology , Liver , Bifidobacterium , Ethanol/metabolism , Mice, Inbred C57BL
14.
Eur J Med Chem ; 261: 115831, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37813064

There remain great unmet needs to treat coronavirus infections in clinic, and the development of novel antiviral agents is highly demanded. In this work, a phenotypic screening against our in-house compound library identified several cajanine derivatives with moderate antiviral activity against HCoV-OC43. Based on the scaffold of cajanine, a series of quinazoline derivatives were designed employing a scaffold-hopping strategy. After an iterative structural optimization campaign, several quinazoline derivatives with potent antiviral efficacy (EC50: ∼0.1 µM) and high selectivity (SI > 1000) were successfully identified. The preliminary mechanism of action study indicated that such quinazoline derivatives functioned at the early stage of infection. In aggregate, this work delivered a new chemical type of coronavirus inhibitors, which could be employed not only for further development of antiviral drugs but also as important chemical tools to delineate the target of action.


Coronavirus Infections , Coronavirus , Humans , Antiviral Agents/chemistry , Quinazolines/pharmacology , Quinazolines/therapeutic use , Coronavirus Infections/drug therapy , Structure-Activity Relationship
15.
AMB Express ; 13(1): 97, 2023 Sep 16.
Article En | MEDLINE | ID: mdl-37716924

Gut dysbiosis causes damage to the intestinal barrier and is associated with type 2 diabetes mellitus (T2DM). We tested the potential protective effects of probiotic BL21 and LRa05 on gut microbiota in type 2 diabetes mellitus mice and determined whether these effects were related to the modulation of gut microbiota.Thirty specific pathogen-free C57BL/6J mice were randomly allocated to three groups-the (CTL) control group, HFD/STZ model (T2DM) group, and HFD/STZ-probiotic intervention (PRO) group-and intragastrically administered strains BL21 and LRa05 for 11 weeks. The administration of strains BL21 and LRa05 significantly regulated blood glucose levels, accompanied by ameliorated oxidative stress in mice. The BL21/LRa05-treated mice were protected from liver, cecal, and colon damage. Microbiota analysis showed that the cecal and fecal microbiota of the mice presented significantly different spatial distributions from one another. Principal coordinate analysis results indicated that both T2DM and the BL21/LRa05 intervention had significant effects on the cecal contents and fecal microbiota structure. In terms of the fecal microbiota, an abundance of Akkermansia and Anaeroplasma was noted in the PRO group. In terms of the cecal content microbiota, enrichment of Akkermansia, Desulfovibrio, Bifidobacterium, Lactobacillus, and Limosilactobacillus was noted in the PRO group. The probiotics BL21 and LRa05 prevent or ameliorate T2DM by regulating the intestinal flora and reducing inflammation and oxidative stress. Our results suggest that BL21 and LRa05 colonize in the cecum. Thus, BL21/LRa05 combined with probiotics having a strong ability to colonize in the colon may achieve better therapeutic effects in T2DM. Our study illustrated the feasibility and benefits of the combined use of probiotics and implied the importance of intervening at multiple intestinal sites in T2DM mice.

16.
Front Plant Sci ; 14: 1201553, 2023.
Article En | MEDLINE | ID: mdl-37528988

In woody plants, bark is an important protective tissue which can participate in photosynthesis, manage water loss, and transport assimilates. Studying the bark anatomical traits can provide insight into plant environmental adaptation strategies. However, a systematic understanding of the variability in bark anatomical traits and their drivers is lacking in woody plants. In this study, the bark anatomical traits of 23 Picea species were determined in a common garden experiment. We analyzed interspecific differences and interpreted the patterns in bark anatomical traits in relation to phylogenetic relationships and climatic factors of each species according to its global distribution. The results showed that there were interspecific differences in bark anatomical traits of Picea species. Phloem thickness was positively correlated with parenchyma cell size, possibly related to the roles of parenchyma cells in the radial transport of assimilates. Sieve cell size was negatively correlated with the radial diameter of resin ducts, and differences in sieve cells were possibly related to the formation and expansion of resin ducts. There were no significant phylogenetic signals for any bark anatomical trait, except the tangential diameter of resin ducts. Phloem thickness and parenchyma cell size were affected by temperature-related factors of their native range, while sieve cell size was influenced by precipitation-related factors. Bark anatomical traits were not significantly different under wet and dry climates. This study makes an important contribution to our understanding of variability in bark anatomical traits among Picea species and their ecological adaptations.

17.
Sci Data ; 10(1): 563, 2023 08 24.
Article En | MEDLINE | ID: mdl-37620343

Crude oil pipelines are considered as the lifelines of energy industry. However, accidents of the pipelines can lead to severe public health and environmental concerns, in which greenhouse gas (GHG) emissions, primarily methane, are frequently overlooked. While previous studies examined fugitive emissions in normal operation of crude oil pipelines, emissions resulting from accidents were typically managed separately and were therefore not included in the emission account of oil systems. To bridge this knowledge gap, we employed a bottom-up approach to conducted the first-ever inventory of GHG emissions resulting from crude oil pipeline accidents in the United States at the state level from 1968 to 2020, and leveraged Monte Carlo simulation to estimate the associated uncertainties. Our results reveal that GHG emissions from accidents in gathering pipelines (~720,000 tCO2e) exceed those from transmission pipelines (~290,000 tCO2e), although significantly more accidents have occurred in transmission pipelines (6883 cases) than gathering pipelines (773 cases). Texas accounted for over 40% of total accident-related GHG emissions nationwide. Our study contributes to enhanced accuracy of the GHG account associated with crude oil transport and implementing the data-driven climate mitigation strategies.

18.
J Food Sci ; 88(9): 3893-3904, 2023 Sep.
Article En | MEDLINE | ID: mdl-37548631

Ulcerative colitis (UC) is a type of inflammatory bowel disease associated with immune system dysfunction caused by gut dysbiosis. This study aimed to investigate the alleviating effect of Lactobacillus acidophilus LA85 on colitis and its underlying mechanism using mouse models of dextran sulfate sodium (DSS)-induced UC. The UC mouse models were established by treating C57BL/6J male mice with 2.5% (w/v) DSS in drinking water for 7 days. These mice received supplementation with either L. acidophilus LA85 (1 × 109 colony-forming units/day) or 200 µL of sterile water once daily (LA85-treated and UC model mice, respectively). The disease activity index (DAI), colon length, and histological changes in the colons of mice were then analyzed at Day 21, and the effects of L. acidophilus LA85 on the gut microbiota and serum inflammatory cytokines were also investigated. Compared with the UC model mice, L. acidophilus LA85-treated UC mice showed significant reductions in a variety of colitis symptoms, including weight loss, the DAI score, colon shortening, and colon tissue damage. Lactobacillus acidophilus LA85 supplementation also significantly decreased the serum concentrations of tumor necrosis factor α and interleukin-6 while increasing the serum concentration of IL-10. Furthermore, LA85 supplementation improved the diversity and composition of the gut microbiota, both of which had been decreased by DSS. In particular, L. acidophilus LA85-treated UC mice showed higher relative abundances of Akkermansia and Romboutsia than the UC model mice. These results demonstrate that L. acidophilus LA85 can alleviate inflammatory diseases of the intestine, such as inflammatory bowel disease, by regulating immune responses and restoring the gut microbiota. PRACTICAL APPLICATION: Ulcerative colitis is a type of inflammatory bowel disease caused by imbalance of gut microbiota. This study showed that L. acidophilus LA85 can alleviate DSS-induced colitis in mice through regulation of inflammatory cytokines, protection of intestinal barrier, and regulation of specific gut microbiota. L. acidophilus LA85 is a promising probiotic candidate for the treatment of UC.


Colitis, Ulcerative , Colitis , Inflammatory Bowel Diseases , Probiotics , Male , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Lactobacillus acidophilus , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy , Colon , Cytokines , Disease Models, Animal
19.
Environ Monit Assess ; 195(9): 1057, 2023 Aug 17.
Article En | MEDLINE | ID: mdl-37591945

Based on the Landsat normalized difference vegetation index (NDVI) and the NDVI product of MODIS, this study synthesized two kinds of time-series images. The features were selected according to the characteristics of the time series, and the random forest algorithm was used for classification. Based on the classification results and GIS spatial analysis, the temporal and spatial changes in vegetation cover in the Yellow River Delta from 2000 to 2020 were studied. The results showed that from 2000 to 2020, the vegetation first increased and then decreased, and the dynamic degree of land cover change was generally low. The monthly average minimum NDVI values during the vegetation growth period mostly occurred before 2010, and the maximum values occurred after 2010. From the spatial perspective, the average vegetation area of the Yellow River Delta accounted for 31.54% of the total study area; specifically, the spatial pattern of vegetation distribution was relatively fixed, and the fixed vegetation area accounted for 63.90% of the total vegetation area. The spatial distribution had significant differences, and the vegetation was distributed radially from the center of the Yellow River to the periphery, with significant fragmentation found outside the watershed. The Yellow River had a strong interference with vegetation growth, and the stable vegetation distribution areas were concentrated near the Yellow River. The correlation coefficient between vegetation distribution and the location of the Yellow River was - 0.9964.


Environmental Monitoring , Rivers , Time Factors , Random Forest , Spatial Analysis
20.
J Biol Chem ; 299(8): 104992, 2023 08.
Article En | MEDLINE | ID: mdl-37392848

Malignant hyperthermia susceptibility (MHS) is an autosomal dominant pharmacogenetic disorder that manifests as a hypermetabolic state when carriers are exposed to halogenated volatile anesthetics or depolarizing muscle relaxants. In animals, heat stress intolerance is also observed. MHS is linked to over 40 variants in RYR1 that are classified as pathogenic for diagnostic purposes. More recently, a few rare variants linked to the MHS phenotype have been reported in CACNA1S, which encodes the voltage-activated Ca2+ channel CaV1.1 that conformationally couples to RyR1 in skeletal muscle. Here, we describe a knock-in mouse line that expresses one of these putative variants, CaV1.1-R174W. Heterozygous (HET) and homozygous (HOM) CaV1.1-R174W mice survive to adulthood without overt phenotype but fail to trigger with fulminant malignant hyperthermia when exposed to halothane or moderate heat stress. All three genotypes (WT, HET, and HOM) express similar levels of CaV1.1 by quantitative PCR, Western blot, [3H]PN200-110 receptor binding and immobilization-resistant charge movement densities in flexor digitorum brevis fibers. Although HOM fibers have negligible CaV1.1 current amplitudes, HET fibers have similar amplitudes to WT, suggesting a preferential accumulation of the CaV1.1-WT protein at triad junctions in HET animals. Never-the-less both HET and HOM have slightly elevated resting free Ca2+ and Na+ measured with double barreled microelectrode in vastus lateralis that is disproportional to upregulation of transient receptor potential canonical (TRPC) 3 and TRPC6 in skeletal muscle. CaV1.1-R174W and upregulation of TRPC3/6 alone are insufficient to trigger fulminant malignant hyperthermia response to halothane and/or heat stress in HET and HOM mice.


Halothane , Heat-Shock Response , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Malignant Hyperthermia , Animals , Mice , Calcium/metabolism , Halothane/pharmacology , Heat-Shock Response/genetics , Malignant Hyperthermia/genetics , Malignant Hyperthermia/metabolism , Malignant Hyperthermia/pathology , Muscle, Skeletal/metabolism , Mutation , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics
...