Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.337
Filtrar
2.
Heart ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266045

RESUMEN

BACKGROUND: Acute aortic dissection (AD) in pregnancy poses a lethal risk to both mother and fetus. However, well-established therapeutic guidelines are lacking. This study aimed to investigate clinical features, outcomes and optimal management strategies for pregnancy-related AD. METHODS: We conducted a retrospective multicentre cohort study including 67 women with acute AD during pregnancy or within 12 weeks postpartum from three major cardiovascular centres in China between 2003 and 2021. Patient characteristics, management strategies and short-term outcomes were analysed. RESULTS: Median age was 31 years, with AD onset at median 32 weeks gestation. Forty-six patients (68.7%) had type A AD, of which 41 underwent immediate surgery. Overall maternal mortality was 10.4% (7/67) and fetal mortality was 26.9% (18/67). Compared with immediate surgery, selective surgery was associated with higher risk of composite maternal and fetal death (adjusted RR: 12.47 (95% CI 3.26 to 47.73); p=0.0002) and fetal death (adjusted RR: 8.77 (95% CI 2.33 to 33.09); p=0.001). CONCLUSIONS: Immediate aortic surgery should be considered for type A AD at any stage of pregnancy or postpartum. For pregnant women with AD before fetal viability, surgical treatment with the fetus in utero should be considered. Management strategies should account for dissection type, gestational age, and fetal viability. TRIAL REGISTRATION NUMBER: NCT05501145.

3.
Org Lett ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311499

RESUMEN

S-Alkyl dithiocarbamates, as an important class of sulfur-containing compounds, play pivotal roles in diverse fields, yet methods for the synthesis that start from simple, readily available feedstocks and exhibit mild conditions and structurally diverse products are scarce. In this work, we developed an efficient approach for the synthesis of various S-alkyl dithiocarbamates via visible-light photocatalysis with readily available and structurally diverse alkyl carboxylic acids (primary, secondary, and tertiary acids, amino acids, etc.) and disulfide tetraalkylthiuram as the starting materials. This protocol features high efficiency, mild reaction conditions, a broad substrate scope, and good functional group tolerance. Potential applications are further demonstrated by a sunlight experiment, H2O as a solvent, gram-scale synthesis, and facile synthesis of bioactive molecules.

5.
J Org Chem ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39290096

RESUMEN

A facile and efficient annulation strategy was developed from easily accessible a-bromoketones, aminopyridines and benzazol, which afforded a series of imidazole [1,2-a]pyridine sulfides in moderate to good yields. The reaction involves the formation of C-N/C-S bond with the advantages of easy operation and wide substrates scope.

6.
Cancer Immunol Immunother ; 73(11): 217, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235522

RESUMEN

OBJECTIVES: To provide molecular and immunological attributes mechanistic insights for the management of radiologically distinctive multiple primary lung cancer (MPLC). METHODS: The Bulk RNA-seq data of MPLC were obtained from our center. The Bulk RNA-seq data and CT images of patients with single primary lung cancer (SPLC) were obtained from GSE103584. Immune infiltration algorithms were performed to investigate the disparities in the immunological microenvironment between the two groups. Single-cell gene analysis was used to explore immune cells composition and communication relationships between cells in MPLC. RESULTS: In MPLC, 11 pure ground-glass opacity nodules (pGGN) and 10 mixed GGN (mGGN) were identified, while in SPLC, the numbers were 18 pGGN and 22 mGGN, respectively. In MPLC, compared to pGGN, mGGN demonstrated a significantly elevated infiltration of CD8+ T cells. Single-cell gene analysis demonstrated that CD8+ T cells play a central role in the signaling among immune cells in MPLC. The transcription factors including MAFG, RUNX3, and TBX21 may play pivotal roles in regulation of CD8+ T cells. Notably, compared to SPLC nodules for both mGGN and pGGN, MPLC nodules demonstrated a significantly elevated degree of tumor-infiltrating immune cells, with this difference being particularly pronounced in mGGN. There was a positive correlation between the proportion of immune cells and consolidation/tumor ratio (CTR). CONCLUSIONS: Our findings provided a comprehensive description about the difference in the immune microenvironment between pGGN and mGGN in early-stage MPLC, as well as between MPLC and SPLC for both mGGN and pGGN. The findings may provide evidence for the design of immunotherapeutic strategies for MPLC.


Asunto(s)
Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Femenino , Persona de Mediana Edad , Anciano , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T CD8-positivos/inmunología , Tomografía Computarizada por Rayos X/métodos
7.
Inorg Chem ; 63(36): 16791-16798, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39190829

RESUMEN

Photocatalytic carbon dioxide (CO2) reduction to value-added chemicals is a multielectron transfer process, and the crucial step is the synthesis of photocatalysts. The introduction of small conjugated organic ligands can make the catalytic active site of the compound easier to be exposed in the reaction system and fully contact with the substrate, accelerating the photocatalytic reaction process. In this paper, we synthesized two isomorphic compounds, namely, {[Co(mtrz)3·(H2O)2]2·[SiW12O40]}·6H2O (1) and {[Ni(mtrz)3·(H2O)2]2·[SiW12O40]}·6H2O (2) (mtrz = 1-methyl-1,2,4-triazole). We found that compound 1 has a great photocatalytic performance through a series of experiments, with a CO reduction yield of 7364.92 µmol g-1 h-1 and a CO selectivity of 82.5%. Furthermore, the high catalytic activity can be maintained over four cycle experiments. The catalytic mechanism of its photocatalytic system is also elucidated, which provides an idea for realizing efficient catalytic reduction of CO2 to CO.

8.
Sci Total Environ ; 951: 175650, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39168333

RESUMEN

The effects of typical organic compounds including easily degradable organic matters sodium acetate, yeast and methanol, and refractory organic matter (ROM) humic acid on anaerobic ammonium oxidation (anammox) systems in short-term and medium-term exposure time were studied. During short-term experiments, nitrogen removal activity (NRA) was inhibited at sodium acetate level of 150 mg L-1 total organic carbon (TOC) and methanol level of 30-150 mg L-1 TOC, but humic acid and yeast (≤150 mg L-1 TOC) enhanced nitrogen removal in anammox systems. The greatest NRA of 30.10 mg TN g-1 VSS h-1 was recorded at yeast level of 90 mg L-1 TOC. In medium-term experiments, organics significantly inhibited the nitrogen removal ability. As a ROM, humic acid enhanced sludge aggregation and biological diversity, but decreased the bioactivity and extracellular polymeric substances levels. Due to the endogenous denitrification, the relative abundance of anammox bacteria (AnAOB) was decreased. Candidatus Kuenenia is still dominant in sludge with methanol and humid acid, but AnAOB are not dominant due to the addition of sodium acetate and yeast. This research would be beneficial for the full-scale application of the anammox process in treating real wastewater with organics and ammonia.


Asunto(s)
Reactores Biológicos , Oxidación-Reducción , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Anaerobiosis , Compuestos de Amonio , Sustancias Húmicas , Nitrógeno , Microbiota/efectos de los fármacos , Contaminantes Químicos del Agua/análisis , Desnitrificación
9.
Huan Jing Ke Xue ; 45(8): 4825-4836, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168699

RESUMEN

To clarify the impact of transportation on the sensitive and fragile ecosystems of the Qinghai Tibet Plateau and major ecological safety barrier functions, soil samples within 0-25 m on the roadside were collected from sections of national highways such as G214, G213, G345, G109, G316, and G317, and the contents of six heavy metals were analyzed. Then, the degree of heavy metal pollution and the risk of ecological hazards were evaluated using the single-factor pollution index method (Pi), Nemero comprehensive index method (PN), and potential ecological risk index method (RI). The results showed that the heavy metal contents of As, Cd, Hg, Ni, Pb, and Zn in the soil of important transportation national roads on the Qinghai Tibet Plateau ranged from 5.65 to 176.00, 0.04 to 0.27, 0.01 to 0.14, 9.52 to 113.00, 9.16 to 54.50, and 24.70 to 109.00 mg·kg-1, respectively, showing high variability. In some sections of the soil, the values of the elements As, Cd, and Hg were higher than the local soil background values. The single-factor pollution index of heavy metals in roadside soil was Pi (As) > Pi (Hg) > Pi(Cd) > Pi (Pb) > Pi (Ni) > Pi (Zn). The Nemero comprehensive pollution index ranged from 0.41 to 9.20, with an average value of 1.53, indicating clean and mild pollution. Some areas showed a moderate or severe pollution. The average potential ecological risk index of the research section was 106.2, and the soil was generally in a state of no pollution and light pollution. Only two road sections had soil heavy metal enrichment reaching moderate and strong ecological hazards. The comprehensive potential risk of the G213a road section indicated moderate to severe ecological risk, mainly contributed by Hg, As, and Cd. The comprehensive pollution risk of the G317 road section indicated mild to moderate ecological risk, mainly contributed by Hg and Cd. The heavy metal content in the soil of the Qinghai Tibet Plateau road area was not significantly correlated with the roadside distance and soil depth but was significantly positively correlated with the annual average temperature (P < 0.05). In all, there was a trend of heavy metal input into the soil environment in areas with intense human activities and high traffic flow during road construction on the Qinghai Tibet Plateau.

10.
Hepatobiliary Surg Nutr ; 13(4): 632-649, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39175719

RESUMEN

Background: High liver fat content (LFC) induces increased risks of both hepatic and extrahepatic progression in metabolic dysfunction-associated steatotic liver disease (MASLD), while maintaining a significant decline in magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) (≥30% decline relative to baseline) without worsening fibrosis results in improved histological severity and prognosis. However, the factors associated with the loss of sustained responses to treatment remain unclear, and we aim to identify them. Methods: Consecutive treatment-naïve MASLD patients between January 2015 and February 2022, with follow-up until April 2023, were included in this prospective cohort study. LFC quantified by MRI-PDFF and liver stiffness measurements (LSM) determined by two-dimensional shear wave elastography (2D-SWE) were evaluated at weeks 0, 24 and 48. MRI-PDFF response was defined as a ≥30% relative decline in PDFF values, and LSM response was defined as a ≥1 stage decline from baseline. Results: A total of 602 MASLD patients were enrolled. Of the 303 patients with a 24-week MRI-PDFF response and complete follow-up of 48 weeks, the rate of loss of MRI-PDFF response was 29.4%, and multivariable logistic regression analyses showed that 24-week insulin resistance (IR), still regular exercise and caloric restriction after 24 weeks, and the relative decline in LFC were risk factors for loss of MRI-PDFF response. Loss of LSM response at 48 weeks occurred in 15.9% of patients, and multivariable analysis confirmed 24-week serum total bile acid (TBA) levels and the relative decline in TBA from baseline as independent predictors. No significant association was found at 48 weeks between loss of MRI-PDFF response and loss of LSM response. Conclusions: MASLD patients with IR and high TBA levels are at higher risks of subsequent diminished sustained improvements of steatosis and fibrosis, respectively.

11.
Synth Syst Biotechnol ; 9(4): 834-841, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39113689

RESUMEN

Coproporphyrin III (CP III), a natural porphyrin derivative, has extensive applications in the biomedical and material industries. S. cerevisiae has previously been engineered to highly accumulate the CP III precursor 5-aminolevulinic acid (ALA) through the C4 pathway. In this study, a combination of cytoplasmic metabolic engineering and mitochondrial compartmentalization was used to enhance CP III production in S. cerevisiae. By integrating pathway genes into the chromosome, the CP III titer gradually increased to 32.5 ± 0.5 mg/L in shake flask cultivation. Nevertheless, increasing the copy number of pathway genes did not consistently enhance CP III synthesis. Hence, the partial synthesis pathway was compartmentalized in mitochondria to evaluate its effectiveness in increasing CP III production. Subsequently, by superimposing the mitochondrial compartmentalization strategy on cytoplasmic metabolic engineered strains, the CP III titer was increased to 64.3 ± 1.9 mg/L. Furthermore, augmenting antioxidant pathway genes to reduce reactive oxygen species (ROS) levels effectively improved the growth of engineered strains, resulting in a further increase in the CP III titer to 82.9 ± 1.4 mg/L. Fed-batch fermentations in a 5 L bioreactor achieved a titer of 402.8 ± 9.3 mg/L for CP III. This study provides a new perspective on engineered yeast for the microbial production of porphyrins.

12.
Int J Neurosci ; : 1-11, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155776

RESUMEN

BACKGROUND: Chemotherapy-induced peripheral neuropathy not only affects the tolerability of chemotherapy, but also causes intolerable and prolonged neuropathic pain in cancer patients. Currently, duloxetine is the only drug used to treat chemotherapy-induced peripheral neuropathy. However, the clinical use of this drug still faces several challenges. Therefore, we focused on traditional Chinese medicine to find an effective and safe alternative medicine. Huangqi Guizhi Wuwu Decoction is a traditional Chinese medicine that has been clinically used for treating nerve pain for thousands of years. This study aimed to investigate the neuroprotective effect of Huangqi Guizhi Wuwu Decoction on cisplatin-induced nerve injury in PC12 cells and to elucidate its potential mechanism of action. METHODS: Huangqi Guizhi Wuwu Decoction-containing serum and blank serum were prepared from a rat model. The protective effects of Huangqi Guizhi Wuwu Decoction on cisplatin (10 µmol/L)-induced PC12 cell injury were assessed by a Cell Counting Kit-8 assay. RNA expression in Huangqi Guizhi Wuwu Decoction-protected PC12 cells was analyzed using RNA-seq, and subsequently, differentially expressed genes were further analyzed using Gene Ontology and Gene Set Enrichment Analysis. RESULTS: The Cell Counting Kit-8 results showed that pretreatment of PC12 cells with Huangqi Guizhi Wuwu Decoction-containing serum (5%, 10%, 15%) significantly increased cells' viability to 10 µmol/L cisplatin-induced cell death. RNA-seq analysis revealed 843 differentially expressed genes in the chemotherapy-induced peripheral neuropathy group and 249 in the Huangqi Guizhi Wuwu Decoction group. The gene set enrichment analysis results in this study suggest that Huangqi Guizhi Wuwu Decoction may treat chemotherapy-induced peripheral neuropathy by enhancing axon guidance. CONCLUSIONS: This study provides valuable evidence for using Huangqi Guizhi Wuwu Decoction in treating chemotherapy-induced peripheral neuropathy, partially achieved by improving axon guidance pathways.

13.
Int J Biol Macromol ; 277(Pt 2): 134118, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098460

RESUMEN

Coated fertilizers have been widely used to improve fertility in barren land. However, improving soil structure and water-retention capacity is also essential for arid and semi-arid areas with sandy soils to promote crop growth. Most currently available coated fertilizers rarely meet these requirements, limiting their application scope. Therefore, this study "tailored" pectin-montmorillonite (PM) multifunctional coatings for arid areas, featuring intercalation reactions and nanoscale entanglement between pectin and montmorillonite via hydrogen bonding and electrostatic and van der Waals forces. Notably, PM coatings have demonstrated an effective "relay" model of action. First, the PM-50 coating could act as a "shield" to protect urea pills, increasing the mechanical strength (82.12 %). Second, this coating prolonged the release longevity of urea (<0.5 h to 15 days). Further, the remaining coating performed a water-retention function. Subsequently, the degraded coating improved the soil properties. Thus, this coating facilitated the growth of wheat seedlings in a simulated arid environment. Moreover, the cytotoxicity test, life cycle assessment, and soil biodegradation experiment showed that the PM coating exhibited minimal environmental impact. Overall, the "relay" model of PM coating overcomes the application limitations of traditional coated fertilizers and provides a sustainable strategy for developing coating materials in soil degradation areas.


Asunto(s)
Bentonita , Preparaciones de Acción Retardada , Fertilizantes , Pectinas , Suelo , Agua , Pectinas/química , Agua/química , Suelo/química , Bentonita/química , Preparaciones de Acción Retardada/química , Biodegradación Ambiental , Triticum/química , Urea/química
14.
Front Plant Sci ; 15: 1434097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188547

RESUMEN

Soil quality is defined as the ability of soil to maintain the soil environment and the biosphere. Due to the limitation of salt and alkali stress, soil quality can be reduced, which in turn affects agricultural production. Biochar is widely used in saline-alkali land improvement because of its special pore structure and strong ion exchange ability, while Piriformospora indica is widely used in saline-alkali land improvement because it can symbiose with plants and improve plant stress resistance. However, the synergistic effect of combined biochar application and inoculation of P. indica on the quality of saline-alkali soil and plant development is uncertain. Hence, we investigated the combined influences of biochar and P. indica on the soil physicochemical characteristics, as well as the growth and chlorophyll florescence of sorghum-sudangrass hybrids (Sorghum bicolor × Sorghum sudane) in our study. The results indicated that after applying biochar and P. indica together, there was a considerable drop in soil pH, conductivity, Na+, and Cl- concentrations. Meanwhile, the soil organic matter (SOM), available phosphorus (AP), and alkaline hydrolyzable nitrogen (AN) increased by 151.81%, 50.84%, and 103.50%, respectively, when the Bamboo biochar was combined with 120 ml/pot of P. indica. Eventually, sorghum-sudangrass hybrid biomass, transpiration rate, and chlorophyll content increased by 111.69%, 204.98%, and 118.54%, respectively. According to our findings, using P. indica and biochar together can enhance soil quality and plant growth. The results also provide insights to enhance the quality of saline-alkali soils and the role of microorganisms in nutrient cycling.

16.
Asian J Androl ; 26(5): 535-543, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39107962

RESUMEN

ABSTRACT: Recent evidence suggests that low-intensity extracorporeal shock wave therapy (Li-ESWT) is a promising treatment for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); however, its safety in pelvic organs, particularly prostate tissues and cells, remains unclear. The current study evaluates the risks of prostate cell damage or oncogenesis following the administration of Li-ESWT for prostatitis. To this end, a robust in vitro model (Cell Counting Kit-8 [CCK-8] assay, clone formation assay, cell scratch assay, lactate dehydrogenase [LDH] release assay, flow cytometry, and immunoblotting assay) was designed to examine the effects of Li-ESWT on cell proliferation, clonogenicity, migration, membrane integrity, and DNA damage. Exome sequencing of Li-ESWT-treated cells was performed to determine the risk of carcinogenesis. Furthermore, an in vivo rat model ( n = 20) was employed to assess the effects of Li-ESWT on cancer biomarkers (carcinoembryonic antigen [CEA], Ki67, proliferating cell nuclear antigen [PCNA], and gamma-H2A histone family member X, phosphorylation of the H2AX Ser-139 [ γ -H2AX]) in prostate tissue. Based on our findings, Li-ESWT promotes cellular growth and motility without inducing significant cell membrane or DNA damage or alterations. Genetic analyses did not demonstrate an increase in mutations, and no damage to prostate tissue or upregulation of cancer biomarkers was detected in vivo. This comprehensive in vitro and in vivo assessment confirms the safety of Li-ESWT in managing prostate disorders.


Asunto(s)
Proliferación Celular , Tratamiento con Ondas de Choque Extracorpóreas , Masculino , Animales , Ratas , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Humanos , Próstata/patología , Prostatitis/terapia , Daño del ADN , Ratas Sprague-Dawley , Movimiento Celular , Neoplasias de la Próstata/terapia
17.
Metab Eng ; 85: 46-60, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019249

RESUMEN

Heme has attracted considerable attention due to its indispensable biological roles and applications in healthcare and artificial foods. The development and utilization of edible microorganisms instead of animals to produce heme is the most promising method to promote the large-scale industrial production and safe application of heme. However, the cytotoxicity of heme severely restricts its efficient synthesis by microorganisms, and the cytotoxic mechanism is not fully understood. In this study, the effect of heme toxicity on Saccharomyces cerevisiae was evaluated by enhancing its synthesis using metabolic engineering. The results showed that the accumulation of heme after the disruption of heme homeostasis caused serious impairments in cell growth and metabolism, as demonstrated by significantly poor growth, mitochondrial damage, cell deformations, and chapped cell surfaces, and these features which were further associated with substantially elevated reactive oxygen species (ROS) levels within the cell (mainly H2O2 and superoxide anion radicals). To improve cellular tolerance to heme, 5 rounds of laboratory evolution were performed, increasing heme production by 7.3-fold and 4.2-fold in terms of the titer (38.9 mg/L) and specific production capacity (1.4 mg/L/OD600), respectively. Based on comparative transcriptomic analyses, 32 genes were identified as candidates that can be modified to enhance heme production by more than 20% in S. cerevisiae. The combined overexpression of 5 genes (SPS22, REE1, PHO84, HEM4 and CLB2) was shown to be an optimal method to enhance heme production. Therefore, a strain with enhanced heme tolerance and ROS quenching ability (R5-M) was developed that could generate 380.5 mg/L heme with a productivity of 4.2 mg/L/h in fed-batch fermentation, with S. cerevisiae strains being the highest producers reported to date. These findings highlight the importance of improving heme tolerance for the microbial production of heme and provide a solution for efficient heme production by engineered yeasts.


Asunto(s)
Hemo , Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hemo/metabolismo , Hemo/biosíntesis , Hemo/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Regen Ther ; 26: 354-365, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39040711

RESUMEN

Vascularization is a key step to achieve pulp tissue regeneration and in vitro pre-vascularized dental pulp tissue could be applied as a graft substitute for dental pulp tissue repair. In this study, human dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (hUVECs) were co-cultured in 3D Matrigel and 150 mV/mm electric fields (EFs) were used to promote the construction of pre-vascularized dental pulp tissue. After optimizing co-cultured ratio of two cell types, immunofluorescence staining, and live/dead detection were used to investigate the effect of EFs on cell survival, differentiation and vessel formation in 3D engineered dental pulp tissue. RNA sequencing was used to investigate the potential molecular mechanisms by which EF regulates vessel formation in 3D engineered dental pulp tissue. Here we identified that EF-induced pre-vascularized engineered dental pulp tissue not only had odontoblasts, but also had a rich vascular network, and smooth muscle-like cells appeared around the blood vessels. The GO enrichment analysis showed that these genes were significantly enriched in regulation of angiogenesis, cell migration and motility. The most significant term of the KEGG pathway analysis were NOTCH signaling pathway and Calcium signaling pathway etc. The PPI network revealed that NOTCH1 and IL-6 were central hub genes. Our study indicated that EFs significantly promoted the maturation and stable of blood vessel in 3D engineered pulp tissue and provided an experimental basis for the application of EF in dental pulp angiogenesis and regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA