Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.299
1.
J Hazard Mater ; 474: 134770, 2024 May 31.
Article En | MEDLINE | ID: mdl-38838522

Accompanied with restriction of legacy per- and polyfluoroalkyl substances (PFASs), numbers of emerging PFASs are widely detected in the environment. However, information on environmental occurrences and behaviors of emerging PFASs were scarce in agricultural soils. In this study, the spatial distributions, sources, substitution trends and ecological risk assessment of 31 legacy and emerging PFASs were investigated in 69 agricultural soils from Fuxin, North China. The 26 out of 31 PFASs were detected with concentrations of 57.36 - 1271.06 pg/g dry weight. Perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were predominant in legacy and emerging PFASs, respectively. Based on principal component and dual carbon-nitrogen stable isotope analysis, atmosphere, fluorochemical activities and river irrigation were main sources of PFASs. Substitution trends indicated HFPO-DA and short chain perfluoroalkyl carboxylic acids (C4 - C7) as main alternatives of PFOA, and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) as major substitutes to perfluorooctanesulfonic acid (PFOS). The calculated risk quotient values (< 0.006) only indicated potential low ecological risk of 7 target PFASs in agricultural soils. The results of this study broadened out the information of PFAS contamination in agricultural soils, which were significant for PFAS supervision in China.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124549, 2024 May 27.
Article En | MEDLINE | ID: mdl-38870694

Ferulic acid ethyl ester (FAEE) is an essential raw material for the formulation of drugs for cardiovascular and cerebrovascular diseases and leukopenia. It is also used as a fixed aroma agent for food production due to its high pharmacological activity. In this study, the interaction of FAEE with Human serum albumin (HSA) and Lysozyme (LZM) was characterized by multi-spectrum and molecular dynamics simulations at four different temperatures. Additionally, the quenching mechanism of FAEE-HSA and FAEE-LZM were explored. Meanwhile, the binding constants, binding sites, thermodynamic parameters, molecular dynamics, molecular docking binding energy, and the influence of metal ions in the system were evaluated. The results of Synchronous fluorescence spectroscopy, UV-vis spectroscopy, CD, three-dimensional fluorescence spectrum, and resonance light scattering showed that the microenvironment of HSA and LZM and the protein conformation changed in the presence of FAEE. Furthermore, the effects of some common metal ions on the binding constants of FAEE-HSA and FAEE-LZM were investigated. Overall, the experimental results provide a theoretical basis for promoting the application of FAEE in the cosmetics, food, and pharmaceutical industries and significant guidance for food safety, drug design, and development.

3.
Am J Med Sci ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38825074

BACKGROUND: Superoxide dismutase 1 (SOD1) is one of the most important participants of antioxidant enzyme system in biological system. Previous studies have found that SOD1 is associated with many inflammatory diseases. The goal of this study was to assess the associations of serum SOD1 with the severity and prognosis in community-acquired pneumonia (CAP) patients by a prospective cohort study. METHODS: CAP patients were enrolled from the Second Affiliated Hospital of Anhui Medical University. Peripheral blood samples were gathered. The level of serum SOD1 was detected through enzyme linked immunosorbent assay (ELISA). Clinical characteristics and demographic information were analyzed. RESULTS: The level of serum SOD1 was gradually upregulated with elevated CAP severity scores. Spearman correlation coefficient or Pearson rank correlation analyses indicated that serum SOD1 was strongly connected with many clinical parameters among CAP patients. Further linear and logistic regression analyses found that the level of serum SOD1 was positively associated with CRB-65, CURB-65, SMART-COP, and CURXO scores among CAP patients. Moreover, serum higher SOD1 at admission substantially increased the risks of ICU admission, mechanical ventilation, vasoactive agent usage, death, and longer hospital stays during hospitalization. Serum SOD1 level combination with CAP severity scores elevated the predictive abilities for severity and death compared with alone serum SOD1 and CAP severity scores in CAP patients during hospitalization. CONCLUSION: The level of serum SOD1 is positively associated with the severity and poor prognosis in CAP patients, suggesting that SOD1 is implicated in the initiation and progression of CAP. Serum SOD1 may be regarded as a biomarker to appraise the severity and prognosis for CAP patients.

4.
Int J Biol Macromol ; 273(Pt 2): 132959, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38848848

Given the environmental concerns related to the non-degradability of conventional petroleum-based polymer films, the synthesis of biodegradable films utilizing natural polymers derived from biomass has emerged as a promising alternative, garnering significant attention in recent research endeavors. This research introduced an environmentally friendly and efficient method, utilizing extract liquid from the green ethanol pulping process as the solvent to completely dissolve carboxymethylcellulose into the film-forming liquid, and employing the solution pouring technique to successfully fabricate bamboo ethanol lignin/carboxymethylcellulose films (LCF). The findings revealed that the lignin content significantly influenced the LCF, endowing them with tunable mechanical properties, effective UV-blocking, and thermal insulation capabilities. With a lignin addition of 3.75 %, LCF-3.75 exhibited enhanced mechanical properties, characterized by a tensile strength of 19.4 MPa, along with superior UV-blocking efficiency, blocking 100 % of UVB and 99.81 % of UVA rays. Furthermore, relative to LCF-0, LCF-3.75 had been shown to possess enhanced hydrophobicity and thermal stability, culminating in the development of the composite films that showcased exceptional thermal insulation properties and biodegradability. The films not only harbored extensive application prospects as an anti-ultraviolet and heat-insulating glass films but also represented a potential avenue for the efficient utilization of lignin, thereby contributing to sustainable development.

5.
Sci Total Environ ; 941: 173678, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38848919

The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.


Anti-Bacterial Agents , Drug Resistance, Microbial , Oxidation-Reduction , Sulfadiazine , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/toxicity , Biodegradation, Environmental
6.
Chem Asian J ; : e202400482, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38884566

The present study focused on a green and readily synthesized Fe-Mn bimetallic oxide doped GAC (Fe-Mn@GAC), to uncover its catalytic kinetics and mechanism when used in the peroxydisulfate (PDS)-based oxidation process for degrading Rhodamine B (RhB), a representative xenobiotic dye. The synthesized Fe-Mn@GAC was characterized by SEM-EDS, XRD, ICP-OES and XPS analyses to confirm its physicochemical properties. The catalytic kinetics of Fe-Mn@GAC + PDS system were evaluated under varying conditions, including PDS and catalyst dosages, solution pH, and the presence of anions. It was found Fe-Mn@GAC exhibited robust catalytic performance, being insensitive to a wide pH range from 3 to 11, and the presence of anions such as Cl-, SO42-, NO3- and CO32-. The catalytic mechanism was investigated by EPR and quenching experiments. The results indicated the catalytic system processed a non-radical oxidation pathway, dominated by direct electron transfer between RhB and Fe-Mn@GAC, with singlet oxygen (1O2) playing a secondary role. The catalytic system also managed to maintain a RhB removal above 81% in successive 10 cycles, and recover to 89.5% after simple DI water rinse, showing great reusability. The catalytic system was further challenged by real dye-containing wastewater, achieving a decolorization rate of 84.5%.

7.
J Int Med Res ; 52(5): 3000605241247656, 2024 May.
Article En | MEDLINE | ID: mdl-38818531

OBJECTIVE: To compare the clinical effects of coronary artery bypass grafting (CABG) between the left anterior small thoracotomy (LAST) and lower-end sternal splitting (LESS) approaches for coronary artery disease. METHODS: In total, 110 patients who underwent LAST from October 2015 to December 2020 in Tianjin Chest Hospital were selected as the observation group. Patients who underwent the LESS approach during the same period were analyzed. The propensity score was calculated by a logistic regression model, and nearest-neighbor matching was used for 1:1 matching. RESULTS: The length of hospital stay and ventilator support time were significantly shorter in the LAST than LESS group. The target vessels in the obtuse marginal branch and posterior left ventricular artery branch grafts were significantly more numerous in the LAST than LESS group, but those in the right coronary artery graft were significantly less numerous in the LAST group. CONCLUSIONS: CABG using either the LAST or LESS approach is safe and effective, especially in low-risk patients. The LAST approach can achieve complete revascularization for multivessel lesions and has the advantages of less trauma and an aesthetic outcome. However, it requires a certain learning curve to master the surgical techniques and has specific surgical indications.


Coronary Artery Bypass , Coronary Artery Disease , Thoracotomy , Humans , Coronary Artery Bypass/methods , Male , Thoracotomy/methods , Female , Middle Aged , Coronary Artery Disease/surgery , Aged , Length of Stay/statistics & numerical data , Sternum/surgery , Treatment Outcome , Propensity Score , Retrospective Studies
8.
Bioresour Technol ; 402: 130806, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718906

The study investigated the inactivation of Microcystis aeruginosa using a combined approach involving thermally activated peroxyacetic acid (Heat/PAA) and thermally activated persulfate (Heat/PDS). The Heat/PDS algal inactivation process conforms to first-order reaction kinetics. Both hydroxyl radical (•OH) and sulfate radical (SO4-•) significantly impact the disruption of cell integrity, with SO4-• assuming a predominant role. PAA appears to activate organic radicals (RO•), hydroxyl (•OH), and a minimal amount of singlet oxygen (1O2). A thorough analysis underscores persulfate's superior ability to disrupt algal cell membranes. Additionally, SO4-• can convert small-molecule proteins into aromatic hydrocarbons, accelerating cell lysis. PAA can accelerate cell death by diffusing into the cell membrane and triggering advanced oxidative reactions within the cell. This study validates the effectiveness of the thermally activated persulfate process and the thermally activated peroxyacetic acid as strategies for algae inactivation.


Microcystis , Oxidation-Reduction , Reactive Oxygen Species , Microcystis/drug effects , Microcystis/metabolism , Reactive Oxygen Species/metabolism , Sulfates/metabolism , Sulfates/pharmacology , Sulfates/chemistry , Peracetic Acid/pharmacology , Hot Temperature , Hydroxyl Radical/metabolism , Kinetics
9.
Chin J Nat Med ; 22(5): 402-415, 2024 May.
Article En | MEDLINE | ID: mdl-38796214

In the realm of autoimmune and inflammatory diseases, the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) signaling pathway has been thoroughly investigated and established. Despite this, the clinical approval of drugs targeting the cGAS-STING pathway has been limited. The Total glucosides of paeony (TGP) is highly anti-inflammatory and is commonly used in the treatment of rheumatoid arthritis (RA), emerged as a subject of our study. We found that the TGP markedly reduced the activation of the cGAS-STING signaling pathway, triggered by various cGAS-STING agonists, in mouse bone marrow-derived macrophages (BMDMs) and Tohoku Hospital Pediatrics-1 (THP-1) cells. This inhibition was noted alongside the suppression of interferon regulatory factor 3 (IRF3) phosphorylation and the expression of interferon-beta (IFN-ß), C-X-C motif chemokine ligand 10 (CXCL10), and inflammatory mediators such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mechanism of action appeared to involve the TGP's attenuation of the STING-IRF3 interaction, without affecting STING oligomerization, thereby inhibiting the activation of downstream signaling pathways. In vivo, the TGP hindered the initiation of the cGAS-STING pathway by the STING agonist dimethylxanthenone-4-acetic acid (DMXAA) and exhibited promising therapeutic effects in a model of acute liver injury induced by lipopolysaccharide (LPS) and D-galactosamine (D-GalN). Our findings underscore the potential of the TGP as an effective inhibitor of the cGAS-STING pathway, offering a new treatment avenue for inflammatory and autoimmune diseases mediated by this pathway.


Glucosides , Interferon Regulatory Factor-3 , Membrane Proteins , Nucleotidyltransferases , Paeonia , Signal Transduction , Interferon Regulatory Factor-3/metabolism , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Glucosides/pharmacology , Mice , Humans , Paeonia/chemistry , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , THP-1 Cells
10.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2754-2765, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812176

This study deciphered the ameliorating effect and molecular mechanism of the total glucosides of White Paeony Capsules(TGP) in the treatment of mice model with acute lung injury(ALI) via NOD-like receptor thermal protein domain associated protein 3(NLRP3) signaling pathway of the inflammasome. The study established an inflammasome activation model of primed bone marrow-derived macrophages(BMDMs), and its molecular mechanism was investigated by Western blot(WB), immunofluorescence staining, enzyme-linked immunosorbent assay(ELISA), and flow cytometry. C57BL/6J mice were randomly divided into a blank control group, a TGP group, a model group(LPS group), LPS+low-and high-dose TGP groups, LPS+MCC950 group, and LPS+MCC950+TGP group, with eight mice per group. The ALI model was induced in mice. Finally, bronchoalveolar lavage fluid(BALF) and lung tissue were collected. Lung index and lung weight wet-to-dry ratio were determined for each group of mice. The pathological changes in lung tissue were observed through hematoxylin-eosin(HE) staining. The number of neutrophils in the BALF of each group was detected using flow cytometry. The levels of interleukin(IL)-1ß, IL-6, and tumor necrosis factor(TNF)-α in the BALF were determined by ELISA. The expressions of IL-1ß, IL-18, IL-6, and TNF-α in the lung tissue were determined by real-time quantitative PCR(RT-qPCR). This study demonstrated that TGP dramatically blocked the activation of the NLRP3 inflammasome by inhibiting the production of upstream mitochondrial reactive oxygen species(mtROS) and the subsequent oligomerization of apoptosis-associated specks(ASC). Additionally, in the ALI mice model, compared with the blank control group, the model group showed alveolar structure rupture, thic-kening of alveolar septa, and dramatically increased lung index, lung weight wet-to-dry ratio in lung tissue, neutrophil count, and inflammatory factor levels. Compared with the model group, the pathological morphology of lung tissue was significantly ameliorated in the TGP and MCC950 groups, and the lung index and lung weight wet-to-dry ratio were significantly reduced. Neutrophil counts were reduced, and levels of inflammatory factors were significantly downregulated. Notably, compared with the MCC950 group, there was no significant difference in effect in the MCC950+TGP group. Collectively, the study reveals that TGP may ameliorate ALI in mice by inhibiting the activation of NLRP3 inflammasome, providing a safe and effective drug candidate for the prevention or treatment of ALI/ARDS.


Acute Lung Injury , Drugs, Chinese Herbal , Glucosides , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Paeonia , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Glucosides/pharmacology , Glucosides/chemistry , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Paeonia/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Capsules , Lung/drug effects , Lung/immunology , Lung/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism
11.
Sci Adv ; 10(21): eadj8184, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781332

Sinking particles are a critical conduit for the transport of surface microbes to the ocean's interior. Vertical connectivity of phylogenetic composition has been shown; however, the functional vertical connectivity of microbial communities has not yet been explored in detail. We investigated protein and taxa profiles of both free-living and particle-attached microbial communities from the surface to 3000 m depth using a combined metaproteomic and 16S rRNA amplicon sequencing approach. A clear compositional and functional vertical connectivity of microbial communities was observed throughout the water column with Oceanospirillales, Alteromonadales, and Rhodobacterales as key taxa. The surface-derived particle-associated microbes increased the expression of proteins involved in basic metabolism, organic matter processing, and environmental stress response in deep waters. This study highlights the functional vertical connectivity between surface and deep-sea microbial communities via sinking particles and reveals that a considerable proportion of the deep-sea microbes might originate from surface waters and have a major impact on the biogeochemical cycles in the deep sea.


Microbiota , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S , Seawater , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Bacteria/genetics , Bacteria/classification
13.
Small Methods ; : e2400428, 2024 May 14.
Article En | MEDLINE | ID: mdl-38741554

Efficiency reduction in perovskite solar cells (PSCs) during the magnification procedure significantly hampers commercialization. Vacuum-flash (VF) has emerged as a promising method to fabricate PSCs with consistent efficiency across scales. However, the slower solvent removal rate of VF compared to the anti-solvent method leads to perovskite films with buried defects. Thus, this work employs low-toxic Lewis base ligand solvent N-ethyl-2-pyrrolidone (NEP) to improve the nucleation process of perovskite films. NEP, with a mechanism similar to that of N-methyl-2-pyrrolidone in FA-based perovskite formation, enhances the solvent removal speed owing to its lower coordination ability. Based on this strategy, p-i-n PSCs with an optimized interface attain a power conversion efficiency (PCE) of 24.19% on an area of 0.08 cm2. The same nucleation process enables perovskite solar modules (PSMs) to achieve a certified PCE of 23.28% on an aperture area of 22.96 cm2, with a high geometric fill factor of 97%, ensuring nearly identical active area PCE (24%) in PSMs as in PSCs. This strategy highlights the potential of NEP as a ligand solvent choice for the commercialization of PSCs.

14.
Insect Sci ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38772748

C-type lectins (CTLs) act as pattern recognition receptors (PRRs) to initiate the innate immune response in insects. A CTL with dual carbohydrate recognition domains (CRDs) (named immulectin-4 [IML-4]) was selected from the Ostrinia furnacalis transcriptome dataset for functional studies. We cloned the full-length complementary DNA of O. furnacalis IML-4 (OfIML-4). It encodes a 328-residue protein with a Glu-Pro-Asn (EPN) and Gln-Pro-Asp (QPD) motifs in 2 CRDs, respectively. OfIML-4 messenger RNA levels increased significantly upon the bacterial and fungal infection. Recombinant OfIML-4 (rIML-4) and its individual CRDs (rCRD1 and rCRD2) exhibited the binding ability to various microorganisms including Escherichia coli, Micrococcus luteus, Pichia pastoris, and Beauveria bassiana, and the cell wall components including lipopolysaccharide from E. coli, peptidoglycan from M. luteus or Bacillus subtilis, and curdlan from Alcaligenes faecalis. The binding further induced the agglutination of E. coli, M. luteus, and B. bassiana in the presence of calcium, the phagocytosis of Staphylococcus aureus by the hemocytes, in vitro encapsulation and melanization of nickel-nitrilotriacetic acid beads, and a significant increase in phenoloxidase activity of plasma. In addition, rIML-4 significantly enhanced the phagocytosis, nodulation, and resistance of O. furnacalis to B. bassiana. Taken together, our results suggest that OfIML-4 potentially works as a PRR to recognize the invading microorganisms, and functions in the innate immune response in O. furnacalis.

15.
ACS Appl Mater Interfaces ; 16(19): 24760-24770, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708525

Perovskite solar cells (PSCs) have shown great potential for reducing costs and improving power conversion efficiency (PCE). One effective method to achieve the latter is to use an all-inorganic charge transport layer (ICTL). However, traditional methods for crystallizing inorganic layers often result in the formation of a powder instead of a continuous film. To address this issue, we designed a dual-layer inorganic electron transport layer (IETL). This dual-layer structure consists of a layer of SnO2 nanocrystals (SnO2 NCs) deposited via a solution process and a dense SnO2 layer deposited through atomic layer deposition (ALD SnO2) to fill the cracks and gaps between the SnO2 NCs. PSCs having these dual-layer SnO2 ETLs achieved a high efficiency of 23.0%. This efficiency surpasses the recorded performance of ICTLs deposited on the perovskite. Furthermore, the PCE is comparable to that achieved with a C60 ETL. Moreover, the high-density structure of the ALD SnO2 layer inhibits the vertical migration of ions, resulting in improved thermal stability. After continuous heating at 85 °C in 10% humidity for 1000 h, the PCE of the dual-layer SnO2 structure decreased by 18%, whereas that of the C60/BCP structure decreased by 36%. The integration of dual-layer SnO2 into PSCs represents a significant advancement in achieving high-performance, commercially viable inverted monolithic PSCs or tandem solar cells.

16.
Commun Biol ; 7(1): 561, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734744

The WRKY transcription factors play essential roles in a variety of plant signaling pathways associated with biotic and abiotic stress response. The transcriptional activity of many WRKY members are regulated by a class of intrinsically disordered VQ proteins. While it is known that VQ proteins interact with the WRKY DNA-binding domains (DBDs), also termed as the WRKY domains, structural information regarding VQ-WRKY interaction is lacking and the regulation mechanism remains unknown. Herein we report a solution NMR study of the interaction between Arabidopsis WRKY33 and its regulatory VQ protein partner SIB1. We uncover a SIB1 minimal sequence neccessary for forming a stable complex with WRKY33 DBD, which comprises not only the consensus "FxxhVQxhTG" VQ motif but also its preceding region. We demonstrate that the ßN-strand and the extended ßN-ß1 loop of WRKY33 DBD form the SIB1 docking site, and build a structural model of the complex based on the NMR paramagnetic relaxation enhancement and mutagenesis data. Based on this model, we further identify a cluster of positively-charged residues in the N-terminal region of SIB1 to be essential for the formation of a SIB1-WRKY33-DNA ternary complex. These results provide a framework for the mechanism of SIB1-enhanced WRKY33 transcriptional activity.


Arabidopsis Proteins , Arabidopsis , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Protein Binding , Models, Molecular , Amino Acid Sequence , Protein Domains
18.
Article En | MEDLINE | ID: mdl-38714595

Providencia genus is known to harbor certain opportunistic pathogens capable of causing human infections. Here, we report two strains of multidrug-resistant bacteria initially identified as Providencia rettgeri by mass spectrometry, but genome analysis revealed their ANI (79.84-84.20%) and dDDH (21.1-25.6%) values to fall below the accepted species threshold for known Providencia species. We therefore propose that these isolates be recognized as a novel species, Providencia xianensis sp. nov. Alarmingly, both strains, isolated from locations far apart, exhibited resistance to last-resort antibiotics, indicating their possible wide distribution, underscoring the urgency for immediate attention and enhanced surveillance for this emerging multidrug-resistant pathogen.

19.
Int J Pharm ; : 124220, 2024 May 09.
Article En | MEDLINE | ID: mdl-38734274

Porous Microneedles (PMNs) have been widely used in drug delivery and medical diagnosis owing to their abundant interconnected pores. However, the mechanical strength, the use of organic solvent, and drug loading capacity have long been challenging. Herein, a novel strategy of PMNs fabrication based on the Ice Templating Method is proposed that is suitable for insoluble, soluble, and nanosystem drug loading. The preparation process simplifies the traditional microneedle preparation process with a shorter preparation time. It endows the highly tunable porous morphology, enhanced mechanical strength, and rapid dissolution performance. Micro-CT three-dimensional reconstruction was used to better quantify the internal structures of PMNs, and we further established the equivalent pore network model to statistically analyze the internal pore structure parameters of PMNs. In particular, the mechanical strength is mainly negatively correlated with the surface porosity, while the dissolution velocity is mainly positively correlated with the permeability coefficient by the correlation heatmap. The poorly water-soluble Asiatic acid was encapsulated in PMNs in nanostructured lipid carriers, showing prominent hypertrophic scar healing trends. This work offers a quick and easy way of preparation that may be used to expand PMNs function and be introduced in industrial manufacturing development.

20.
Sci Rep ; 14(1): 8607, 2024 04 13.
Article En | MEDLINE | ID: mdl-38615120

Stellera chamaejasme (S. chamaejasme) is an important medicinal plant with heat-clearing, detoxifying, swelling and anti-inflammatory effects. At the same time, it is also one of the iconic plants of natural grassland degradation in northwest China, playing a key role in the invasion process. Plant endophytes live in healthy plant tissues and can synthesize substances needed for plant growth, induce disease resistance in host plants, and enhance plant resistance to environmental stress. Therefore, studying the root endophytes of S. chamaejasme is of great significance for mining beneficial microbial resources and biological prevention and control of S. chamaejasme. This study used Illumina MiSeq high-throughput sequencing technology to analyze the composition and diversity of endophytes in the roots of S. chamaejasme in different alpine grasslands (BGC, NMC and XGYZ) in Tibet. Research results show that the main phylum of endophytic fungi in the roots of S. chamaejasme in different regions is Ascomycota, and the main phyla of endophytic bacteria are Actinobacteria, Proteobacteria and Firmicutes (Bacteroidota). Overall, the endophyte diversity of the NMC samples was significantly higher than that of the other two sample sites. Principal coordinate analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA) results showed significant differences in the composition of endophytic bacterial and fungal communities among BGC, NMC and XGYZ samples. Co-occurrence network analysis of endophytes showed that there were positive correlations between fungi and some negative correlations between bacteria, and the co-occurrence network of bacteria was more complex than that of fungi. In short, this study provides a vital reference for further exploring and utilizing the endophyte resources of S. chamaejasme and an in-depth understanding of the ecological functions of S. chamaejasme endophytes.


Actinobacteria , Thymelaeaceae , Endophytes/genetics , High-Throughput Nucleotide Sequencing , Thymelaeaceae/genetics , Analysis of Variance
...