Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Hazard Mater ; 464: 132956, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976853

RESUMEN

Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.


Asunto(s)
Aluminio , Secale , Secale/genética , Secale/metabolismo , Aluminio/toxicidad , Malatos/metabolismo , Malatos/farmacología , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Hojas de la Planta/metabolismo , Azúcares
2.
F1000Res ; 102021.
Artículo en Inglés | MEDLINE | ID: mdl-34136128

RESUMEN

In this meeting overview, we summarise the scientific program and organisation of the 16th International Society for Computational Biology Student Council Symposium in 2020 (ISCB SCS2020). This symposium was the first virtual edition in an uninterrupted series of symposia that has been going on for 15 years, aiming to unite computational biology students and early career researchers across the globe.


Asunto(s)
Biología Computacional , Estudiantes , Humanos , Investigadores
3.
PLoS One ; 14(10): e0222394, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31589627

RESUMEN

The human gut microbiome can influence health through the brain-gut-microbiome axis. Growing evidence suggests that the gut microbiome can influence sleep quality. Previous studies that have examined sleep deprivation and the human gut microbiome have yielded conflicting results. A recent study found that sleep deprivation leads to changes in gut microbiome composition while a different study found that sleep deprivation does not lead to changes in gut microbiome. Accordingly, the relationship between sleep physiology and the gut microbiome remains unclear. To address this uncertainty, we used actigraphy to quantify sleep measures coupled with gut microbiome sampling to determine how the gut microbiome correlates with various measures of sleep physiology. We measured immune system biomarkers and carried out a neurobehavioral assessment as these variables might modify the relationship between sleep and gut microbiome composition. We found that total microbiome diversity was positively correlated with increased sleep efficiency and total sleep time, and was negatively correlated with wake after sleep onset. We found positive correlations between total microbiome diversity and interleukin-6, a cytokine previously noted for its effects on sleep. Analysis of microbiome composition revealed that within phyla richness of Bacteroidetes and Firmicutes were positively correlated with sleep efficiency, interleukin-6 concentrations and abstract thinking. Finally, we found that several taxa (Lachnospiraceae, Corynebacterium, and Blautia) were negatively correlated with sleep measures. Our findings initiate linkages between gut microbiome composition, sleep physiology, the immune system and cognition. They may lead to mechanisms to improve sleep through the manipulation of the gut microbiome.


Asunto(s)
Biodiversidad , Microbioma Gastrointestinal , Sueño/fisiología , Bacterias , Cognición , Humanos , Interleucina-6/metabolismo , Masculino , Filogenia , Pensamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA