Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Vet Entomol ; 20(1): 106-14, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16608495

RESUMEN

Blowfly larvae (Diptera: Calliphoridae) fulfil an important ecological function in the decomposition of animal remains. They are also used extensively in forensic entomology, predominantly to establish a minimum time since death, or a minimum post-mortem interval, using the larval length as a 'biological clock'. This study examined the larval growth rate of a forensically important fly species, Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae) at temperatures of between 4 degrees C and 30 degrees C, under controlled laboratory conditions. The laboratory flies had been trapped initially in London, U.K. The minimum developmental temperature was estimated to be 1 degrees C and 4700 accumulated degree hours (ADH) were required for development from egg hatch to the point of pupariation. Lines fitted to the laboratory larval growth data were found to adequately explain the growth of larvae in the field. The nature of variation in growth rates from geographically isolated populations is discussed.


Asunto(s)
Dípteros/crecimiento & desarrollo , Entomología , Medicina Legal , Temperatura , Animales , Tamaño Corporal/fisiología , Femenino , Larva/crecimiento & desarrollo , Análisis de los Mínimos Cuadrados , Modelos Lineales , Masculino , Factores de Tiempo
2.
Appl Environ Microbiol ; 70(7): 3884-92, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15240259

RESUMEN

Termites are an important component of tropical soil communities and have a significant effect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physicochemical conditions, and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analysis to examine methanogenic archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If these MA are strictly vertically inherited, then the MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus, or rice cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities, but these may represent transient populations in either guts or soil. Our data do not support the hypothesis that termite gut MA are derived from their food-soil but also do not support a purely vertical transmission of gut microflora.


Asunto(s)
Euryarchaeota/aislamiento & purificación , Isópteros/microbiología , Microbiología del Suelo , Animales , Secuencia de Bases , ADN de Archaea/análisis , Euryarchaeota/clasificación , Euryarchaeota/genética , Intestinos/microbiología , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...