Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62
1.
Adv Mater ; 36(7): e2310104, 2024 Feb.
Article En | MEDLINE | ID: mdl-38009560

Super-resolution microscopy has revolutionized biological imaging enabling direct insight into cellular structures and protein arrangements with so far unmatched spatial resolution. Today, refined single-molecule localization microscopy methods achieve spatial resolutions in the one-digit nanometer range. As the race for molecular resolution fluorescence imaging with visible light continues, reliable biologically compatible reference structures will become essential to validate the resolution power. Here, PicoRulers (protein-based imaging calibration optical rulers), multilabeled oligomeric proteins designed as advanced molecular nanorulers for super-resolution fluorescence imaging are introduced. Genetic code expansion (GCE) is used to site-specifically incorporate three noncanonical amino acids (ncAAs) into the homotrimeric proliferating cell nuclear antigen (PCNA) at 6 nm distances. Bioorthogonal click labeling with tetrazine-dyes and tetrazine-functionalized oligonucleotides allows efficient labeling of the PicoRuler with minimal linkage error. Time-resolved photoswitching fingerprint analysis is used to demonstrate the successful synthesis and DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is used to resolve 6 nm PCNA PicoRulers. Since PicoRulers maintain their structural integrity under cellular conditions they represent ideal molecular nanorulers for benchmarking the performance of super-resolution imaging techniques, particularly in complex biological environments.


DNA , Proteins , Proliferating Cell Nuclear Antigen/genetics , Microscopy, Fluorescence/methods , DNA/chemistry , Optical Imaging , Fluorescent Dyes/chemistry
2.
ACS Nano ; 17(21): 21822-21828, 2023 11 14.
Article En | MEDLINE | ID: mdl-37913789

Engineered vesicular stomatitis virus (VSV) pseudotyping offers an essential method for exploring virus-cell interactions, particularly for viruses that require high biosafety levels. Although this approach has been employed effectively, the current methodologies for virus visualization and labeling can interfere with infectivity and lead to misinterpretation of results. In this study, we introduce an innovative approach combining genetic code expansion (GCE) and click chemistry with pseudotyped VSV to produce highly fluorescent and infectious pseudoviruses (clickVSVs). These clickVSVs enable robust and precise virus-cell interaction studies without compromising the biological function of the viral surface proteins. We evaluated this approach by generating VSVs bearing a unique chemical handle for click labeling and assessing the infectivity in relevant cell lines. Our results demonstrate that clickVSVs maintain their infectivity post-labeling and present an efficiency about two times higher in detecting surface proteins compared to classical immunolabeling. The utilization of clickVSVs further allowed us to visualize and track 3D virus binding and infection in living cells, offering enhanced observation of virus-host interactions. Thus, clickVSVs provide an efficient alternative for virus-associated research under the standard biosafety levels.


Vesicular stomatitis Indiana virus , Virus Diseases , Humans , Cell Line , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/metabolism , Membrane Proteins/metabolism
3.
Angew Chem Int Ed Engl ; 62(30): e202300821, 2023 07 24.
Article En | MEDLINE | ID: mdl-36971081

The angiotensin-converting enzyme 2 (ACE2) has been identified as entry receptor on cells enabling binding and infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via trimeric spike (S) proteins protruding from the viral surface. It has been suggested that trimeric S proteins preferably bind to plasma membrane areas with high concentrations of possibly multimeric ACE2 receptors to achieve a higher binding and infection efficiency. Here we used direct stochastic optical reconstruction microscopy (dSTORM) in combination with different labeling approaches to visualize the distribution and quantify the expression of ACE2 on different cells. Our results reveal that endogenous ACE2 receptors are present as monomers in the plasma membrane with densities of only 1-2 receptors µm-2 . In addition, binding of trimeric S proteins does not induce the formation of ACE2 oligomers in the plasma membrane. Supported by infection studies using vesicular stomatitis virus (VSV) particles bearing S proteins our data demonstrate that a single S protein interaction per virus particle with a monomeric ACE2 receptor is sufficient for infection, which provides SARS-CoV-2 a high infectivity.


Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/metabolism , Peptidyl-Dipeptidase A/metabolism , Carrier Proteins/metabolism , Protein Binding
4.
Nature ; 612(7938): 148-155, 2022 12.
Article En | MEDLINE | ID: mdl-36424410

Oncoproteins of the MYC family drive the development of numerous human tumours1. In unperturbed cells, MYC proteins bind to nearly all active promoters and control transcription by RNA polymerase II2,3. MYC proteins can also coordinate transcription with DNA replication4,5 and promote the repair of transcription-associated DNA damage6, but how they exert these mechanistically diverse functions is unknown. Here we show that MYC dissociates from many of its binding sites in active promoters and forms multimeric, often sphere-like structures in response to perturbation of transcription elongation, mRNA splicing or inhibition of the proteasome. Multimerization is accompanied by a global change in the MYC interactome towards proteins involved in transcription termination and RNA processing. MYC multimers accumulate on chromatin immediately adjacent to stalled replication forks and surround FANCD2, ATR and BRCA1 proteins, which are located at stalled forks7,8. MYC multimerization is triggered in a HUWE16 and ubiquitylation-dependent manner. At active promoters, MYC multimers block antisense transcription and stabilize FANCD2 association with chromatin. This limits DNA double strand break formation during S-phase, suggesting that the multimerization of MYC enables tumour cells to proliferate under stressful conditions.


DNA-Directed RNA Polymerases , Humans , Chromatin/genetics , DNA-Directed RNA Polymerases/metabolism , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , DNA Breaks, Double-Stranded , S Phase , Binding Sites , RNA, Messenger/biosynthesis
5.
Bioinformatics ; 38(24): 5421-5429, 2022 12 13.
Article En | MEDLINE | ID: mdl-36315073

MOTIVATION: Single-molecule localization microscopy resolves individual fluorophores or fluorescence-labeled biomolecules. Data are provided as a set of localizations that distribute normally around the true fluorophore position with a variance determined by the localization precision. Characterizing the spatial fluorophore distribution to differentiate between resolution-limited localization clusters, which resemble individual biomolecules, and extended structures, which represent aggregated molecular complexes, is a common challenge. RESULTS: We demonstrate the use of the convex hull and related hull properties of localization clusters for diagnostic purposes, as a parameter for cluster selection or as a tool to determine localization precision. AVAILABILITY AND IMPLEMENTATION: https://github.com/super-resolution/Ebert-et-al-2022-supplement. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Microscopy , Software , Single Molecule Imaging , Fluorescent Dyes/chemistry
6.
Nat Methods ; 19(8): 986-994, 2022 08.
Article En | MEDLINE | ID: mdl-35915194

Advances in super-resolution microscopy have demonstrated single-molecule localization precisions of a few nanometers. However, translation of such high localization precisions into sub-10-nm spatial resolution in biological samples remains challenging. Here we show that resonance energy transfer between fluorophores separated by less than 10 nm results in accelerated fluorescence blinking and consequently lower localization probabilities impeding sub-10-nm fluorescence imaging. We demonstrate that time-resolved fluorescence detection in combination with photoswitching fingerprint analysis can be used to determine the number and distance even of spatially unresolvable fluorophores in the sub-10-nm range. In combination with genetic code expansion with unnatural amino acids and bioorthogonal click labeling with small fluorophores, photoswitching fingerprint analysis can be used advantageously to reveal information about the number of fluorophores present and their distances in the sub-10-nm range in cells.


Fluorescent Dyes , Optical Imaging , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods
7.
Transl Neurodegener ; 11(1): 31, 2022 06 02.
Article En | MEDLINE | ID: mdl-35650592

BACKGROUND: Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. METHODS: Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. RESULTS: We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. CONCLUSIONS: These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases.


Motor Neuron Disease , Muscular Atrophy, Spinal , Animals , Axons/pathology , Axons/physiology , Endoplasmic Reticulum , Mice , Motor Neuron Disease/pathology , Motor Neurons , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Ribosomes
8.
Bioinformatics ; 38(9): 2670-2672, 2022 04 28.
Article En | MEDLINE | ID: mdl-35298593

SUMMARY: Single-molecule localization microscopy has become an important part of the super-resolution microscopy toolbox in biomedical research. Software platforms for applying analytical methods to the point-based data structures are needed that offer both routine application and flexible customization of analysis procedures. We present a python library called LOCAN that consists of well-defined data structures and analysis methods for analyzing localization data in a script or computable notebook. AVAILABILITY AND IMPLEMENTATION: The package source code is released open-source under a BSD-3 license at https://github.com/super-resolution/Locan. It can be installed from the Python Package Index at https://pypi.org/project/locan. Documentation is available at https://locan.readthedocs.io.


Libraries , Microscopy , Software , Documentation
10.
Front Synaptic Neurosci ; 13: 727406, 2021.
Article En | MEDLINE | ID: mdl-34899260

Fluorescence labeling of difficult to access protein sites, e.g., in confined compartments, requires small fluorescent labels that can be covalently tethered at well-defined positions with high efficiency. Here, we report site-specific labeling of the extracellular domain of γ-aminobutyric acid type A (GABA-A) receptor subunits by genetic code expansion (GCE) with unnatural amino acids (ncAA) combined with bioorthogonal click-chemistry labeling with tetrazine dyes in HEK-293-T cells and primary cultured neurons. After optimization of GABA-A receptor expression and labeling efficiency, most effective variants were selected for super-resolution microscopy and functionality testing by whole-cell patch clamp. Our results show that GCE with ncAA and bioorthogonal click labeling with small tetrazine dyes represents a versatile method for highly efficient site-specific fluorescence labeling of proteins in a crowded environment, e.g., extracellular protein domains in confined compartments such as the synaptic cleft.

11.
Nat Commun ; 12(1): 6715, 2021 11 18.
Article En | MEDLINE | ID: mdl-34795271

Progress in biological imaging is intrinsically linked to advances in labeling methods. The explosion in the development of high-resolution and super-resolution imaging calls for new approaches to label targets with small probes. These should allow to faithfully report the localization of the target within the imaging resolution - typically nowadays a few nanometers - and allow access to any epitope of the target, in the native cellular and tissue environment. We report here the development of a complete labeling and imaging pipeline using genetic code expansion and non-canonical amino acids in neurons that allows to fluorescently label masked epitopes in target transmembrane proteins in live neurons, both in dissociated culture and organotypic brain slices. This allows us to image the differential localization of two AMPA receptor (AMPAR) auxiliary subunits of the transmembrane AMPAR regulatory protein family in complex with their partner with a variety of methods including widefield, confocal, and dSTORM super-resolution microscopy.


Amino Acids/metabolism , Epitopes/metabolism , Membrane Proteins/metabolism , Neurons/metabolism , Staining and Labeling/methods , Animals , COS Cells , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Microscopy, Confocal/methods , Optical Imaging/methods , Rats, Sprague-Dawley , Receptors, AMPA/metabolism
12.
Cell Rep ; 37(1): 109770, 2021 10 05.
Article En | MEDLINE | ID: mdl-34610300

Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.


Drosophila melanogaster/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , Animals , Animals, Genetically Modified/metabolism , Cluster Analysis , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Image Processing, Computer-Assisted/methods , Larva/metabolism , Microscopy, Fluorescence , Neuromuscular Junction/metabolism , Polyamines/pharmacology , Receptors, Ionotropic Glutamate/deficiency , Receptors, Ionotropic Glutamate/genetics , Synaptic Transmission/drug effects , rab3 GTP-Binding Proteins/genetics , rab3 GTP-Binding Proteins/metabolism
13.
J Cell Sci ; 134(22)2021 11 15.
Article En | MEDLINE | ID: mdl-34668554

In neurons, the endoplasmic reticulum (ER) forms a highly dynamic network that enters axons and presynaptic terminals and plays a central role in Ca2+ homeostasis and synapse maintenance; however, the underlying mechanisms involved in regulation of its dynamic remodeling as well as its function in axon development and presynaptic differentiation remain elusive. Here, we used high-resolution microscopy and live-cell imaging to investigate rapid movements of the ER and ribosomes in axons of cultured motoneurons after stimulation with brain-derived neurotrophic factor. Our results indicate that the ER extends into axonal growth cone filopodia, where its integrity and dynamic remodeling are regulated mainly by actin and the actin-based motor protein myosin VI (encoded by Myo6). Additionally, we found that in axonal growth cones, ribosomes assemble into 80S subunits within seconds and associate with the ER in response to extracellular stimuli, which describes a novel function of axonal ER in dynamic regulation of local translation. This article has an associated First Person interview with Chunchu Deng, joint first author of the paper.


Axons , Presynaptic Terminals , Endoplasmic Reticulum , Humans , Motor Neurons , Ribosomes
14.
Leukemia ; 35(1): 201-214, 2021 01.
Article En | MEDLINE | ID: mdl-32350373

Multiple myeloma (MM) is incurable, so there is a significant unmet need for effective therapy for patients with relapsed or refractory disease. This situation has not changed despite the recent approval of the anti-CD38 antibody daratumumab, one of the most potent agents in MM treatment. The efficiency of daratumumab might be improved by combining it with synergistic anti-MM agents. We therefore investigated the potential of the histone deacetylase (HDAC) inhibitor ricolinostat to up-regulate CD38 on MM cells, thereby enhancing the performance of CD38-specific therapies. Using quantitative reverse transcription polymerase chain reaction and flow cytometry, we observed that ricolinostat significantly increases CD38 RNA levels and CD38 surface expression on MM cells. Super-resolution microscopy imaging of MM cells by direct stochastic optical reconstruction microscopy confirmed this rise with molecular resolution and revealed homogeneous distribution of CD38 molecules on the cell membrane. Particularly important is that combining ricolinostat with daratumumab induced enhanced lysis of MM cells. We also evaluated next-generation HDAC6 inhibitors (ACY-241, WT-161) and observed similar increase of CD38 levels suggesting that the upregulation of CD38 expression on MM cells by HDAC6 inhibitors is a class effect. This proof-of-concept illustrates the potential benefit of combining HDAC6 inhibitors and CD38-directed immunotherapy for MM treatment.


ADP-ribosyl Cyclase 1/genetics , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Membrane Glycoproteins/genetics , Multiple Myeloma/genetics , ADP-ribosyl Cyclase 1/metabolism , Antibody-Dependent Cell Cytotoxicity/drug effects , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line, Tumor , Drug Synergism , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hydroxamic Acids/pharmacology , Immunophenotyping , Membrane Glycoproteins/metabolism , Models, Biological , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Pyrimidines/pharmacology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
15.
Sci Adv ; 6(16): eaay7193, 2020 04.
Article En | MEDLINE | ID: mdl-32494600

G protein-coupled receptors (GPCRs) play a fundamental role in the modulation of synaptic transmission. A pivotal example is provided by the metabotropic glutamate receptor type 4 (mGluR4), which inhibits glutamate release at presynaptic active zones (AZs). However, how GPCRs are organized within AZs to regulate neurotransmission remains largely unknown. Here, we applied two-color super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) to investigate the nanoscale organization of mGluR4 at parallel fiber AZs in the mouse cerebellum. We find an inhomogeneous distribution, with multiple nanodomains inside AZs, each containing, on average, one to two mGluR4 subunits. Within these nanodomains, mGluR4s are often localized in close proximity to voltage-dependent CaV2.1 channels and Munc-18-1, which are both essential for neurotransmitter release. These findings provide previously unknown insights into the molecular organization of GPCRs at AZs, suggesting a likely implication of a close association between mGluR4 and the secretory machinery in modulating synaptic transmission.


Receptors, Metabotropic Glutamate , Synapses , Animals , Mice , Microscopy , Synapses/physiology , Synaptic Transmission/physiology
16.
Nat Commun ; 11(1): 887, 2020 02 14.
Article En | MEDLINE | ID: mdl-32060305

The molecular organization of receptors in the plasma membrane of cells is paramount for their functionality. We combined lattice light-sheet (LLS) microscopy with three-dimensional (3D) single-molecule localization microscopy (dSTORM) and single-particle tracking to quantify the expression and distribution, and mobility of CD56 receptors on whole fixed and living cells, finding that CD56 accumulated at cell-cell interfaces. For comparison, we investigated two other receptors, CD2 and CD45, which showed different expression levels and distributions in the plasma membrane. Overall, 3D-LLS-dSTORM enabled imaging and single-particle tracking of plasma membrane receptors with single-molecule sensitivity unperturbed by surface effects. Our results demonstrate that receptor distribution and mobility are largely unaffected by contact to the coverslip but the measured localization densities are in general lower at the basal plasma membrane due to partial limited accessibility for antibodies.


CD2 Antigens/metabolism , CD56 Antigen/metabolism , Cell Membrane/metabolism , Leukocyte Common Antigens/metabolism , Single Molecule Imaging/methods , CD2 Antigens/chemistry , CD56 Antigen/chemistry , Cell Line , Cell Membrane/chemistry , Humans , Imaging, Three-Dimensional/methods , Leukocyte Common Antigens/chemistry
17.
Front Cell Dev Biol ; 7: 194, 2019.
Article En | MEDLINE | ID: mdl-31572726

Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the ß2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection.

18.
Nat Commun ; 10(1): 3137, 2019 07 17.
Article En | MEDLINE | ID: mdl-31316055

Immunotherapy with chimeric antigen receptor-engineered T-cells (CAR-T) is under investigation in multiple myeloma. There are reports of myeloma remission after CD19 CAR-T therapy, although CD19 is hardly detectable on myeloma cells by flow cytometry (FC). We apply single molecule-sensitive direct stochastic optical reconstruction microscopy (dSTORM), and demonstrate CD19 expression on a fraction of myeloma cells (10.3-80%) in 10 out of 14 patients (density: 13-5,000 molecules per cell). In contrast, FC detects CD19 in only 2 of these 10 patients, on a smaller fraction of cells. Treatment with CD19 CAR-T in vitro results in elimination of CD19-positive myeloma cells, including those with <100 CD19 molecules per cell. Similar data are obtained by dSTORM analyses of CD20 expression on myeloma cells and CD20 CAR-T. These data establish a sensitivity threshold for CAR-T and illustrate how super-resolution microscopy can guide patient selection in immunotherapy to exploit ultra-low density antigens.


Antigens, CD19/metabolism , Multiple Myeloma/therapy , Biomarkers/metabolism , Cohort Studies , Flow Cytometry , Humans , Immunotherapy, Adoptive , Interferon-gamma/metabolism , Multiple Myeloma/metabolism , Receptors, Chimeric Antigen/therapeutic use
19.
Commun Biol ; 2: 261, 2019.
Article En | MEDLINE | ID: mdl-31341960

Genetic code expansion (GCE) technology allows the specific incorporation of functionalized noncanonical amino acids (ncAAs) into proteins. Here, we investigated the Diels-Alder reaction between trans-cyclooct-2-ene (TCO)-modified ncAAs, and 22 known and novel 1,2,4,5-tetrazine-dye conjugates spanning the entire visible wavelength range. A hallmark of this reaction is its fluorogenicity - the tetrazine moiety can elicit substantial quenching of the dye. We discovered that photoinduced electron transfer (PET) from the excited dye to tetrazine is the main quenching mechanism in red-absorbing oxazine and rhodamine derivatives. Upon reaction with dienophiles quenching interactions are reduced resulting in a considerable increase in fluorescence intensity. Efficient and specific labeling of all tetrazine-dyes investigated permits super-resolution microscopy with high signal-to-noise ratio even at the single-molecule level. The different cell permeability of tetrazine-dyes can be used advantageously for specific intra- and extracellular labeling of proteins and highly sensitive fluorescence imaging experiments in fixed and living cells.


Fluorescent Dyes/chemistry , Genetic Code , Microscopy, Confocal/instrumentation , Optical Imaging/instrumentation , Animals , COS Cells , Chlorocebus aethiops , Coloring Agents/chemistry , Cycloaddition Reaction , Cyclooctanes/chemistry , HEK293 Cells , Heterocyclic Compounds/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Microscopy, Confocal/methods , Optical Imaging/methods , Rhodamines , Staining and Labeling
20.
Biophys J ; 116(11): 2073-2078, 2019 06 04.
Article En | MEDLINE | ID: mdl-31103233

We introduce a method for registration and visualization of correlative super-resolution microscopy images from different microscopy techniques. We established an automated registration procedure based on the generalized Hough transform. We developed a software tool to apply this algorithm and visualize correlated images from structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). To demonstrate the potential of this super-resolution correlator, we visualize the distribution of the presynaptic protein bassoon in the active zones of synapses in the molecular layer of the mouse cerebellum. First, a multiple labeled sample is imaged by SIM, followed by imaging of one of the fluorescent labels by dSTORM. To avoid the use of artificial fiducial markers, we used the signal of Alexa Fluor 647 recorded in switching buffer on the two microscopes for image superposition. We recorded multicolor SIM images in 20-µm thick brain slices to identify synapses in the dendritic system of Purkinje cells and put higher-resolved dSTORM images of the synaptic distribution of bassoon in registry.


Image Processing, Computer-Assisted/methods , Microscopy , Signal-To-Noise Ratio , Synapses/metabolism
...