Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Gels ; 9(12)2023 Dec 08.
Article En | MEDLINE | ID: mdl-38131948

Chronic wounds, especially those that are hard-to-heal, constitute a serious public-health problem. Although progress has been made in the development of wound dressings for healing, there is little high-quality evidence of their efficacy, with no evidence of superiority in the use of one hydrogel over another. To evaluate the superiority of a hydrogel (EHO-85), containing Olea europaea leaf extract (OELE), over a standard hydrogel (SH), the promotion and/or improvement of healing of difficult-to-heal wounds was compared in a prospective, parallel-group multicenter, randomized, observer-blinded, controlled trial ("MACAON"). Non-hospitalized patients with pressure, venous or diabetic foot-ulcers difficult-to-heal were recruited and treated with standard care, and EHO-85 (n = 35) or VariHesive (n = 34) as SH. Wound-area reduction (WAR; percentage) and healing rate (HR; mm2/day) were measured. EHO-85 showed a statistically significant superior effect over VariHesive. At the end of the follow-up period, the relative WAR decreased by 51.6% vs. 18.9% (p < 0.001), with a HR mean of 10.5 ± 5.7 vs. 1.0 ± 7.5 mm2/day (p = 0.036). EHO-85 superiority is probably based on its optimal ability to balance the ulcer bed, by modulating pH and oxidative stress. That complements the wetting and barrier functions, characteristics of conventional hydrogels. These results support the use of EHO-85 dressing, for treatment of hard-to-heal ulcers. Trial Registration AEMPS:PS/CR623/17/CE.

2.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article En | MEDLINE | ID: mdl-37686133

Olive tree (Olea europaea) leaf extract (OELE) has important antioxidant and anti-inflammatory properties, supporting its use in human clinical practice. We recently designed an amorphous hydrogel called EHO-85 (EHO indicates olive leaf extract in Spanish) containing OELE for skin ulcer treatments. Yet, its effectiveness has not been previously compared with other products used in routine clinical practice. This is necessary to evaluate its potential translation to the human clinic. Thus, in this study, the effect of EHO-85 on healing was evaluated in comparison with treatments containing Indian/Asiatic pennywort (Centella asiatica), hyaluronic acid, or dexpanthenol in a rat model. The speed of wound closure and histological parameters after seven and 14 days were analyzed. All treatments accelerated wound closure, but there were differences between them. Dexpanthenol after seven days produced the highest epithelialization and the lowest inflammation and vascularization. EHO-85 also promoted epithelialization and reduced vascularization. After 14 days, wounds treated with EHO-85 showed less inflammation and higher levels of collagen in the extracellular matrix. This indicates a higher degree of maturity in the regenerated tissue. In conclusion, the effect of EHO-85 on healing was equal to or superior to that of other treatments routinely used in human clinical practice. Therefore, these results, together with previous data on the effects of this hydrogel on ulcer healing in humans, indicate that EHO-85 is a suitable, low-cost, and efficient therapeutic option for wound healing.


Olea , Humans , Animals , Rats , Hydrogels , Wound Healing , Inflammation , Metaplasia , Neovascularization, Pathologic , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
J Clin Med ; 12(14)2023 Jul 12.
Article En | MEDLINE | ID: mdl-37510747

DPP4 may play a relevant role in MSC differentiation into osteoblasts or adipocytes. Dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4i), such as sitagliptin and vildagliptin, are used as antidiabetic drugs. However, vildagliptin is not a specific DPP4i and also inhibits DPP8/9, which is involved in energy metabolism and immune regulation. The aim of this study is to evaluate how sitagliptin, vildagliptin or 1G244 (a DPP8/9 specific inhibitor) may influence cell viability, as well as osteogenic and adipogenic differentiation in human mesenchymal stem cells (MSC). Viability, apoptosis, osteoblastogenesis and adipogenesis markers, as well as protein synthesis of ß-catenin, were studied in MSC cultures induced to differentiate into osteoblasts or adipocytes in the presence or absence of sitagliptin, vildagliptin or 1G244. The two tested DPP4i did not affect MSC viability, but 1G244 significantly decreased it in MSC and osteoblast-induced cells. Additionally, 1G244 and vildagliptin inhibited osteogenesis and adipogenesis, unlike sitagliptin. Therefore, inhibition of DPP4 did not affect MSC viability and differentiation, whereas inhibition of DPP8/9 negatively affected MSC. To the best of our knowledge, these results show for the first time that DPP8/9 have an important role in the viability and differentiation of human MSC. This data can be considered for human clinical use of drugs affecting DPP8/9 activity.

4.
Pharmaceutics ; 15(7)2023 Jul 11.
Article En | MEDLINE | ID: mdl-37514112

Many advanced wound healing dressings exist, but there is little high-quality evidence to support them. To determine the performance of a novel amorphous hydrogel (EHO-85) in relation to its application, we compared its rheological properties with those of other standard hydrogels (SH), and we assessed the induction of acceleration of the early stages of wound healing as a secondary objective of a prospective, multicenter, randomized, observer-blinded, controlled trial. The patients were recruited if they had pressure, venous, or diabetic foot ulcers and were treated with EHO-85 (n = 103) or VariHesive® (SH) (n = 92), and their response was assessed by intention-to-treat as wound area reduction (WAR (%)) and healing rate (HR mm2/day) in the second and fourth weeks of treatment. Results: EHO-85 had the highest shear thinning and G'/G″ ratio, the lowest viscous modulus, G″, and relatively low cohesive energy; EHO-85 had a significantly superior effect over SH in WAR and HR, accelerating wound healing in the second and fourth weeks of application (p: 0.002). This superiority is likely based on its optimal moisturizing capacity and excellent pH-lowering and antioxidant properties. In addition, the distinct shear thinning of EHO-85 facilitates spreading by gentle hand pressure, making it easier to apply to wounds. These rheological properties contribute to its improved performance.

5.
J Clin Med ; 12(13)2023 Jun 29.
Article En | MEDLINE | ID: mdl-37445420

Bone metabolism is regulated by osteoblasts, osteoclasts, osteocytes, and stem cells. Pathologies such as osteoporosis, osteoarthritis, osteonecrosis, and traumatic fractures require effective treatments that favor bone formation and regeneration. Among these, cell therapy based on mesenchymal stem cells (MSC) has been proposed. MSC are osteoprogenitors, but their regenerative activity depends in part on their paracrine properties. These are mainly mediated by extracellular vesicle (EV) secretion. EV modulates regenerative processes such as inflammation, angiogenesis, cell proliferation, migration, and differentiation. Thus, MSC-EV are currently an important tool for the development of cell-free therapies in regenerative medicine. This review describes the current knowledge of the effects of MSC-EV in the different phases of bone regeneration. MSC-EV has been used by intravenous injection, directly or in combination with different types of biomaterials, in preclinical models of bone diseases. They have shown great clinical potential in regenerative medicine applied to bone. These findings should be confirmed through standardization of protocols, a better understanding of the mechanisms of action, and appropriate clinical trials. All that will allow the translation of such cell-free therapy to human clinic applications.

6.
World J Stem Cells ; 14(7): 453-472, 2022 Jul 26.
Article En | MEDLINE | ID: mdl-36157530

The use of mesenchymal stem-cells (MSC) in cell therapy has received considerable attention because of their properties. These properties include high expansion and differentiation in vitro, low immunogenicity, and modulation of biological processes, such as inflammation, angiogenesis and hematopoiesis. Curiously, the regenerative effect of MSC is partly due to their paracrine activity. This has prompted numerous studies, to investigate the therapeutic potential of their secretome in general, and specifically their extracellular vesicles (EV). The latter contain proteins, lipids, nucleic acids, and other metabolites, which can cause physiological changes when released into recipient cells. Interestingly, contents of EV can be modulated by preconditioning MSC under different culture conditions. Among them, exposure to hypoxia stands out; these cells respond by activating hypoxia-inducible factor (HIF) at low O2 concentrations. HIF has direct and indirect pleiotropic effects, modulating expression of hundreds of genes involved in processes such as inflammation, migration, proliferation, differentiation, angiogenesis, metabolism, and cell apoptosis. Expression of these genes is reflected in the contents of secreted EV. Interestingly, numerous studies show that MSC-derived EV conditioned under hypoxia have a higher regenerative capacity than those obtained under normoxia. In this review, we show the implications of hypoxia responses in relation to tissue regeneration. In addition, hypoxia preconditioning of MSC is being evaluated as a very attractive strategy for isolation of EV, with a high potential for clinical use in regenerative medicine that can be applied to different pathologies.

7.
Funct Integr Genomics ; 22(6): 1391-1401, 2022 Dec.
Article En | MEDLINE | ID: mdl-36089609

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since it infected humans almost 3 years ago. Improvements of current assays and the development of new rapid tests or to diagnose SARS-CoV-2 are urgent. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a rapid and propitious assay, allowing to detect both colorimetric and/or fluorometric nucleic acid amplifications. This study describes the analytical and clinical evaluation of RT-LAMP assay for detection of SARS-CoV-2, by designing LAMP primers targeting N (nucleocapsid phosphoprotein), RdRp (polyprotein), S (surface glycoprotein), and E (envelope protein) genes. The assay's performance was compared with the gold standard RT-PCR, yielding 94.6% sensitivity and 92.9% specificity. Among the tested primer sets, the ones for S and N genes had the highest analytical sensitivity, showing results in about 20 min. The colorimetric and fluorometric comparisons revealed that the latter is faster than the former. The limit of detection (LoD) of RT-LAMP reaction in both assays is 50 copies/µl of the reaction mixture. However, the simple eye-observation advantage of the colorimetric assay (with a color change from yellow to red) serves a promising on-site point-of-care testing method anywhere, including, for instance, laboratory and in-house applications.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcription , Colorimetry/methods , COVID-19/diagnosis , COVID-19/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics
8.
Front Plant Sci ; 13: 851079, 2022.
Article En | MEDLINE | ID: mdl-35860541

Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.

9.
Funct Integr Genomics ; 22(2): 171-178, 2022 Apr.
Article En | MEDLINE | ID: mdl-34997394

Genome-wide oil biosynthesis was explored by de novo sequencing two cultivated olive tree (Olea europaea) varieties (cv. Ayvalik and Picual). This is the first report of the former variety sequencing. As outgroups, raw reads of cv. Leccino and scaffold-level assembly of cv. Farga were also retrieved. Each of these four cultivars was chromosome-scale assembled into 23 pseudochromosomes, with 1.31 Gbp (Farga), 0.93 Gbp (Ayvalik), 0.7 Gbp (Picual), and 0.54 Gbp (Leccino) in size. Ab initio gene finding was performed on these assemblies, using wild olive tree (oleaster)-trained parameters. High numbers of gene models were predicted and anchored to the pseudochromosomes: 69,028 (Ayvalik), 55,073 (Picual), 63,785 (Farga), and 40,449 (Leccino). Using previously reported oil biosynthesis genes from wild olive tree genome project, the following homologous sequences were identified: 1,355 (Ayvalik), 1,269 (Farga), 812 (Leccino), and 774 (Picual). Of these, 358 sequences were commonly shared by all cultivars. Besides, some sequences were cultivar unique: Ayvalik (126), Farga (118), Leccino (46), and Picual (52). These putative sequences were assigned to various GO terms, ranging from lipid metabolism to stress tolerance, from signal transactions to development, and to many others, implicating that oil biosynthesis is synergistically regulated with involvement of various other pathways.


Olea , Olea/genetics
10.
Stem Cell Rev Rep ; 18(1): 56-76, 2022 01.
Article En | MEDLINE | ID: mdl-34677817

Dipeptidyl peptidase IV (DPP4) is a ubiquitous protease that can be found in membrane-anchored or soluble form. Incretins are one of the main DPP4 substrates. These hormones regulate glucose levels, by stimulating insulin secretion and decreasing glucagon production. Because DPP4 levels are high in diabetes, DPP4 inhibitor (DPP4i) drugs derived from gliptin are widespread used as hypoglycemic agents for its treatment. However, as DPP4 recognizes other substrates such as chemokines, growth factors and neuropeptides, pleiotropic effects have been observed in patients treated with DPP4i. Several of these substrates are part of the stem-cell niche. Thus, they may affect different physiological aspects of mesenchymal stem-cells (MSC). They include viability, differentiation, mobilization and immune response. MSC are involved in tissue homeostasis and regeneration under both physiological and pathological conditions. Therefore, such cells and their secretomes have a high clinical potential in regenerative medicine. In this context, DPP4 activity may modulate different aspects of MSC regenerative capacity. Therefore, the aim of this review is to analyze the effect of different DPP4 substrates on MSC. Likewise, how the regulation of DPP4 activity by DPP4i can be applied in regenerative medicine. That includes treatment of cardiovascular and bone pathologies, cutaneous ulcers, organ transplantation and pancreatic beta-cell regeneration, among others. Thus, DPP4i has an important clinical potential as a complement to therapeutic strategies in regenerative medicine. They involve enhancing the differentiation, immunomodulation and mobilization capacity of MSC for regenerative purposes.


Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors , Biology , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Humans , Incretins/metabolism , Regenerative Medicine
11.
Nutrients ; 13(11)2021 Nov 22.
Article En | MEDLINE | ID: mdl-34836440

Phloretin (a flavonoid abundant in apple), has antioxidant, anti-inflammatory, and glucose-transporter inhibitory properties. Thus, it has interesting pharmacological and nutraceutical potential. Bone-marrow mesenchymal stem cells (MSC) have high differentiation capacity, being essential for maintaining homeostasis and regenerative capacity in the organism. Yet, they preferentially differentiate into adipocytes instead of osteoblasts with aging. This has a negative impact on bone turnover, remodeling, and formation. We have evaluated the effects of phloretin on human adipogenesis, analyzing MSC induced to differentiate into adipocytes. Expression of adipogenic genes, as well as genes encoding OPG and RANKL (involved in osteoclastogenesis), protein synthesis, lipid-droplets formation, and apoptosis, were studied. Results showed that 10 and 20 µM phloretin inhibited adipogenesis. This effect was mediated by increasing beta-catenin, as well as increasing apoptosis in adipocytes, at late stages of differentiation. In addition, this chemical increased OPG gene expression and OPG/RANKL ratio in adipocytes. These results suggest that this flavonoid (including phloretin-rich foods) has interesting potential for clinical and regenerative-medicine applications. Thus, such chemicals could be used to counteract obesity and prevent bone-marrow adiposity. That is particularly useful to protect bone mass and treat diseases like osteoporosis, which is an epidemic worldwide.


Adipocytes/drug effects , Adipogenesis/drug effects , Mesenchymal Stem Cells/cytology , Osteoprotegerin/drug effects , Phloretin/pharmacology , Humans , RANK Ligand/drug effects
12.
Biomolecules ; 11(8)2021 07 28.
Article En | MEDLINE | ID: mdl-34439777

Recent developments have revolutionized the study of biomolecules. Among them are molecular markers, amplification and sequencing of nucleic acids. The latter is classified into three generations. The first allows to sequence small DNA fragments. The second one increases throughput, reducing turnaround and pricing, and is therefore more convenient to sequence full genomes and transcriptomes. The third generation is currently pushing technology to its limits, being able to sequence single molecules, without previous amplification, which was previously impossible. Besides, this represents a new revolution, allowing researchers to directly sequence RNA without previous retrotranscription. These technologies are having a significant impact on different areas, such as medicine, agronomy, ecology and biotechnology. Additionally, the study of biomolecules is revealing interesting evolutionary information. That includes deciphering what makes us human, including phenomena like non-coding RNA expansion. All this is redefining the concept of gene and transcript. Basic analyses and applications are now facilitated with new genome editing tools, such as CRISPR. All these developments, in general, and nucleic-acid sequencing, in particular, are opening a new exciting era of biomolecule analyses and applications, including personalized medicine, and diagnosis and prevention of diseases for humans and other animals.


Genome , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Whole Genome Sequencing/methods , Animals , Base Sequence , DNA/chemistry , Genomics/history , High-Throughput Nucleotide Sequencing/history , High-Throughput Nucleotide Sequencing/instrumentation , History, 20th Century , History, 21st Century , Humans , RNA, Messenger/chemistry , Sequence Analysis, DNA/history , Sequence Analysis, DNA/instrumentation , Sequence Analysis, RNA/history , Sequence Analysis, RNA/instrumentation , Whole Genome Sequencing/history , Whole Genome Sequencing/instrumentation
13.
Front Genet ; 12: 618659, 2021.
Article En | MEDLINE | ID: mdl-33603776

New High-Performance Computing architectures have been recently developed for commercial central processing unit (CPU). Yet, that has not improved the execution time of widely used bioinformatics applications, like BLAST+. This is due to a lack of optimization between the bases of the existing algorithms and the internals of the hardware that allows taking full advantage of the available CPU cores. To optimize the new architectures, algorithms must be revised and redesigned; usually rewritten from scratch. BLVector adapts the high-level concepts of BLAST+ to the x86 architectures with AVX-512, to harness their capabilities. A deep comprehensive study has been carried out to optimize the approach, with a significant reduction in time execution. BLVector reduces the execution time of BLAST+ when aligning up to mid-size protein sequences (∼750 amino acids). The gain in real scenario cases is 3.2-fold. When applied to longer proteins, BLVector consumes more time than BLAST+, but retrieves a much larger set of results. BLVector and BLAST+ are fine-tuned heuristics. Therefore, the relevant results returned by both are the same, although they behave differently specially when performing alignments with low scores. Hence, they can be considered complementary bioinformatics tools.

14.
Article En | MEDLINE | ID: mdl-32195233

The cells secrete extracellular vesicles (EV) that may have an endosomal origin, or from evaginations of the plasma membrane. The former are usually called exosomes, with sizes ranging from 50 to 100 nm. These EV contain a lipid bilayer associated to membrane proteins. Molecules such as nucleic acids (DNA, mRNA, miRNA, lncRNA, etc.) and proteins may be stored inside. The EV composition depends on the producer cell type and its physiological conditions. Through them, the cells modify their microenvironment and the behavior of neighboring cells. That is accomplished by transferring factors that modulate different metabolic and signaling pathways. Due to their properties, EV can be applied as a diagnostic and therapeutic tool in medicine. The mesenchymal stromal cells (MSC) have immunomodulatory properties and a high regenerative capacity. These features are linked to their paracrine activity and EV secretion. Therefore, research on exosomes produced by MSC has been intensified for use in cell-free regenerative medicine. In this area, the use of EV for the treatment of chronic skin ulcers (CSU) has been proposed. Such sores occur when normal healing does not resolve properly. That is usually due to excessive prolongation of the inflammatory phase. These ulcers are associated with aging and diseases, such as diabetes, so their prevalence is increasing with the one of such latter disease, mainly in developed countries. This has very important socio-economic repercussions. In this review, we show that the application of MSC-derived EV for the treatment of CSU has positive effects, including accelerating healing and decreasing scar formation. This is because the EV have immunosuppressive and immunomodulatory properties. Likewise, they have the ability to activate the angiogenesis, proliferation, migration, and differentiation of the main cell types involved in skin regeneration. They include endothelial cells, fibroblasts, and keratinocytes. Most of the studies carried out so far are preclinical. Therefore, there is a need to advance more in the knowledge about the conditions of production, isolation, and action mechanisms of EV. Interestingly, their potential application in the treatment of CSU opens the door for the design of new highly effective therapeutic strategies.

15.
World J Stem Cells ; 12(12): 1667-1690, 2020 Dec 26.
Article En | MEDLINE | ID: mdl-33505607

BACKGROUND: Mesenchymal stem cells (MSC) of bone marrow are the progenitor of osteoblasts and adipocytes. MSC tend to differentiate into adipocytes, instead of osteoblasts, with aging. This favors the loss of bone mass and development of osteoporosis. Hypoxia induces hypoxia inducible factor 1α gene encoding transcription factor, which regulates the expression of genes related to energy metabolism and angiogenesis. That allows a better adaptation to low O2 conditions. Sustained hypoxia has negative effects on bone metabolism, favoring bone resorption. Yet, surprisingly, cyclic hypoxia (CH), short times of hypoxia followed by long times in normoxia, can modulate MSC differentiation and improve bone health in aging. AIM: To evaluate the CH effect on MSC differentiation, and whether it improves bone mineral density in elderly. METHODS: MSC cultures were induced to differentiate into osteoblasts or adipocytes, in CH (3% O2 for 1, 2 or 4 h, 4 d a week). Extracellular-matrix mineralization and lipid-droplet formation were studied in MSC induced to differentiate into osteoblast or adipocytes, respectively. In addition, gene expression of marker genes, for osteogenesis or adipogenesis, have been quantified by quantitative real time polymerase chain reaction. The in vivo studies with elderly (> 75 years old; n = 10) were carried out in a hypoxia chamber, simulating an altitude of 2500 m above sea level, or in normoxia, for 18 wk (36 CH sessions of 16 min each). Percentages of fat mass and bone mineral density from whole body, trunk and right proximal femur (femoral, femoral neck and trochanter) were assessed, using dual-energy X-ray absorptiometry. RESULTS: CH (4 h of hypoxic exposure) inhibited extracellular matrix mineralization and lipid-droplet formation in MSC induced to differentiate into osteoblasts or adipocytes, respectively. However, both parameters were not significantly affected by the other shorter hypoxia times assessed. The longest periods of hypoxia downregulated the expression of genes related to extracellular matrix formation, in MSC induced to differentiate into osteoblasts. Interestingly, osteocalcin (associated to energy metabolism) was upregulated. Vascular endothelial growth factor an expression and low-density lipoprotein receptor related protein 5/6/dickkopf Wnt signaling pathway inhibitor 1 (associated to Wnt/ß-catenin pathway activation) increased in osteoblasts. Yet, they decreased in adipocytes after CH treatments, mainly with the longest hypoxia times. However, the same CH treatments increased the osteoprotegerin/receptor activator for nuclear factor kappa B ligand ratio in both cell types. An increase in total bone mineral density was observed in elderly people exposed to CH, but not in specific regions. The percentage of fat did not vary between groups. CONCLUSION: CH may have positive effects on bone health in the elderly, due to its possible inhibitory effect on bone resorption, by increasing the osteoprotegerin / receptor activator for nuclear factor kappa B ligand ratio.

16.
World J Stem Cells ; 11(12): 1045-1064, 2019 Dec 26.
Article En | MEDLINE | ID: mdl-31875868

Extra virgin olive oil is characterized by its high content of unsaturated fatty acid residues in triglycerides, mainly oleic acid, and the presence of bioactive and antioxidant compounds. Its consumption is associated with lower risk of suffering chronic diseases and unwanted processes linked to aging, due to the antioxidant capacity and capability of its components to modulate cellular signaling pathways. Consumption of olive oil can alter the physiology of mesenchymal stem cells (MSCs). This may explain part of the healthy effects of olive oil consumption, such as prevention of unwanted aging processes. To date, there are no specific studies on the action of olive oil on MSCs, but effects of many components of such food on cell viability and differentiation have been evaluated. The objective of this article is to review existing literature on how different compounds of extra virgin olive oil, including residues of fatty acids, vitamins, squalene, triterpenes, pigments and phenols, affect MSC maintenance and differentiation, in order to provide a better understanding of the healthy effects of this food. Interestingly, most studies have shown a positive effect of these compounds on MSCs. The collective findings support the hypothesis that at least part of the beneficial effects of extra virgin olive oil consumption on health may be mediated by its effects on MSCs.

17.
PLoS One ; 14(2): e0211718, 2019.
Article En | MEDLINE | ID: mdl-30811415

Climatic conditions affect the growth, development and final crop production. As wheat is of paramount importance as a staple crop in the human diet, there is a growing need to study its abiotic stress adaptation through the performance of key breeding traits. New and complementary approaches, such as genome-wide association studies (GWAS) and genomic selection (GS), are used for the dissection of different agronomic traits. The present study focused on the dissection of agronomic and quality traits of interest (initial agronomic score, yield, gluten index, sedimentation index, specific weight, whole grain protein and yellow colour) assessed in a panel of 179 durum wheat lines (Triticum durum Desf.), grown under rainfed conditions in different Mediterranean environments in Southern Spain (Andalusia). The findings show a total of 37 marker-trait associations (MTAs) which affect phenotype expression for three quality traits (specific weight, gluten and sedimentation indexes). MTAs could be mapped on the A and B durum wheat subgenomes (on chromosomes 1A, 1B, 2A, 2B and 3A) through the recently available bread wheat reference assembly (IWGSC RefSeqv1). Two of the MTAs found for quality traits (gluten index and SDS) corresponded to the known Glu-B1 and Glu-A1 loci, for which candidate genes corresponding to high molecular weight glutenin subunits could be located. The GS prediction ability values obtained from the breeding materials analyzed showed promising results for traits as grain protein content, sedimentation and gluten indexes, which can be used in plant breeding programs.


Triticum/genetics , Genes, Plant/genetics , Genetic Association Studies , Genetic Loci/genetics , Genetic Markers/genetics , Genome-Wide Association Study , Plant Breeding , Quantitative Trait, Heritable , Spain , Triticum/growth & development
18.
Calcif Tissue Int ; 104(6): 631-640, 2019 06.
Article En | MEDLINE | ID: mdl-30725167

Osteoporosis long-term treatment with nitrogen-containing bisphosphonates, has been associated with uncommon adverse effects, as atypical femoral fractures (AFF). Thus, treatment with teriparatide (TPTD; fragment of human parathyroid hormone; PTH1-34) has been proposed for such patients. Besides its anabolizing effect on bone, TPTD may affect stem-cell mobilization and expansion. Bone marrow mononuclear cells (BMMNC) were isolated from five women that had suffered AFF associated to bisphosphonate treatment, before and after 6 months of TPTD therapy. The presence of mesenchymal stromal cells (CD73, CD90 and CD105 positive cells), gene expression of NANOG, SOX2 and OCT4, proliferation, senescence and capacity to differentiate into osteoblasts and adipocytes were analyzed. After TPTD treatment, BMMNC positive cells for CD73, CD90 and CD105 increased from 6.5 to 37.5% (p < 0.05); NANOG, SOX2 and OCT4 were upregulated, being statistically significant for NANOG (p < 0.05), and cells increased proliferative capacity more than 50% at day 7 (p < 0.05). Senescence was reduced 2.5-fold (p < 0.05), increasing differentiation capacity into osteoblasts and adipocytes, with more than twice mineralization capacity of extracellular matrix or fat-droplet formation (p < 0.05), respectively. Results show that TPTD treatment caused BMMNC "rejuvenation", increasing the number of cells in a more undifferentiated stage, with higher differentiation potency. This effect may favor TPTD anabolic action on bone in such patients with AFF, increasing osteoblast precursor cells. Such response could also arise in other osteoporotic patients treated with TPTD, without previous AFF. Furthermore, our data suggest that TPTD effect on stromal cells may have clinical implications for bone-regenerative medicine. Further studies may deepen on this potential.


Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Osteoporosis, Postmenopausal/drug therapy , Osteoporotic Fractures/drug therapy , Teriparatide/therapeutic use , Adipocytes/drug effects , Adipocytes/physiology , Aged , Biopsy , Bone Density Conservation Agents/therapeutic use , Bone Marrow/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Female , Humans , Mesenchymal Stem Cells/pathology , Osteoblasts/drug effects , Osteoblasts/physiology , Osteoporosis, Postmenopausal/complications , Osteoporosis, Postmenopausal/pathology , Osteoporotic Fractures/pathology , Primary Cell Culture , Proof of Concept Study , Remission Induction
19.
Funct Integr Genomics ; 19(2): 295-309, 2019 Mar.
Article En | MEDLINE | ID: mdl-30446876

Wheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status phenotyping, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B, and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars.


Droughts , Genome, Plant , Stress, Physiological , Triticum/genetics , Plant Breeding/methods , Quantitative Trait Loci , Transcriptome , Triticum/physiology
20.
Mol Nutr Food Res ; 62(2)2018 01.
Article En | MEDLINE | ID: mdl-29131551

SCOPE: ß-Cryptoxanthin is an abundant carotenoid in fruits and vegetables that can be quantified in human blood serum. Yet, contrary to other carotenoids, its effects on endothelial cells and angiogenesis remain unknown. METHODS AND RESULTS: Human umbilical vein endothelial cells (HUVEC) are treated with 0.01, 0.1, or 1 µm of ß-cryptoxanthin. Antioxidant activity is determined by its free radical scavenging and oxygen-radical absorbance capacity. The effect on migration and formation of tubular structures is studied. Additionally, effect on angiogenesis is also analyzed using an in vivo model. ß-Cryptoxanthin exhibits scavenging ability, having an antioxidant effect on HUVEC. Interestingly, ß-cryptoxanthin reduces their migration and angiogenesis, even in the presence of vascular endothelial growth factor (VEGF). Additionally, such carotenoid inhibits in vivo angiogenesis induced by VEGF. In addition, treatment of HUVEC with LE540 (retinoic acid receptor [RAR] panantagonist) inhibits ß-cryptoxanthin antiangiogenic effect on HUVEC. CONCLUSION: ß-Cryptoxanthin inhibits angiogenesis through RAR. Thus, this carotenoid and food containing it may be useful for the prevention and treatment of angiogenic pathologies. That includes tumoral growth and wet macular degeneration associated with aging. To the best of our knowledge, this is the first report of the antioxidant effect and antiangiogenic activity of this carotenoid on HUVEC, both in vitro and in vivo.


Angiogenesis Inhibitors/pharmacology , Beta-Cryptoxanthin/pharmacology , Neovascularization, Physiologic/drug effects , Receptors, Retinoic Acid/metabolism , Animals , Antioxidants/pharmacology , Cell Movement/drug effects , Dibenzazepines/pharmacology , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice, Inbred C57BL , Neovascularization, Physiologic/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology
...