Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39111823

RESUMEN

Ritlecitinib is an oral once-daily irreversible inhibitor of Janus kinase 3 and tyrosine-protein kinase family being developed for the treatment of moderate-to-severe alopecia areata. This study examined the disposition of ritlecitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite profiles. The results indicated ritlecitinib had a systemic clearance of 43.7 L/h, a steady state volume of distribution of 73.8 L, extent of absorption of 89%, time to maximum plasma concentration of ~0.5 hour, and absolute oral bioavailability of 64%. An observed long terminal half-life of total radioactivity was primarily attributed to ritlecitinib binding to plasma albumin. Ritlecitinib was the main circulating drug species in plasma (~30%) with one major pharmacologically inactive cysteine conjugated metabolite (M2) at >10%. Oxidative metabolism (fractional clearance 0.47) and glutathione related conjugation (fractional clearance 0.24) were the primary routes of elimination for ritlecitinib with the greatest disposition of radioactivity shown in the urine (~71%). In vitro phenotyping indicated ritlecitinib cytochrome P450 fraction of metabolism assignments of 0.29 for CYP3A, 0.09 for CYP2C8, 0.07 for CYP1A2, and 0.02 for CYP2C9. In vitro phenotyping in recombinant human glutathione S-transferases indicated ritlecitinib was turned over by a number of cytosolic and microsomal enzyme isoforms. Significance Statement This study provides a detailed understanding of the disposition and metabolism of ritlecitinib, a JAK3 and TEC family kinase inhibitor for alopecia areata, in humans, as well as characterization of clearance pathways and PK of ritlecitinib and its metabolites. As an AMS-based ADME study design, we have expanded on reporting the standard ADME endpoints, providing key pharmacokinetic parameters like clearance, volume of distribution and bioavailability allowing for a more comprehensive understanding of drug disposition.

2.
Drug Metab Dispos ; 52(7): 690-702, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38719744

RESUMEN

Brepocitinib is an oral once-daily Janus kinase 1 and Tyrosine kinase 2 selective inhibitor currently in development for the treatment of several autoimmune disorders. Mass balance and metabolic profiles were determined using accelerator mass spectrometry in six healthy male participants following a single oral 60 mg dose of 14C-brepocitinib (∼300 nCi). The average mass balance recovery was 96.7% ± 6.3%, with the majority of dose (88.0% ± 8.0%) recovered in urine and 8.7% ± 2.1% of the dose recovered in feces. Absorption of brepocitinib was rapid, with maximal plasma concentrations of total radioactivity and brepocitinib achieved within 0.5 hours after dosing. Circulating radioactivity consisted primarily of brepocitinib (47.8%) and metabolite M1 (37.1%) derived from hydroxylation at the C5' position of the pyrazole ring. Fractional contributions to metabolism via cytochrome P450 enzymes were determined to be 0.77 for CYP3A4/5 and 0.14 for CYP1A2 based on phenotyping studies in human liver microsomes. However, additional clinical studies are required to understand the potential contribution of CYP1A1. Approximately 83% of the dose was eliminated as N-methylpyrazolyl oxidative metabolites, with 52.1% of the dose excreted as M1 alone. Notably, M1 was not observed as a circulating metabolite in earlier metabolic profiling of human plasma from a multiple ascending dose study with unlabeled brepocitinib. Mechanistic studies revealed that M1 was highly unstable in human plasma and phosphate buffer, undergoing chemical oxidation leading to loss of the 5-hydroxy-1-methylpyrazole moiety and formation of aminopyrimidine cleavage product M2. Time-dependent inhibition and trapping studies with M1 yielded insights into the mechanism of this unusual and unexpected instability. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of brepocitinib, a JAK1/TYK2 inhibitor for atopic dermatitis, in humans as well as characterization of clearance pathways and pharmacokinetics of brepocitinib and its metabolites.


Asunto(s)
Inhibidores de Proteínas Quinasas , Humanos , Masculino , Adulto , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/metabolismo , Adulto Joven , Pirazoles/farmacocinética , Pirazoles/metabolismo , Pirazoles/sangre , Pirazoles/administración & dosificación , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Administración Oral , Citocromo P-450 CYP3A/metabolismo , Voluntarios Sanos , Microsomas Hepáticos/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Heces/química , Hidroxilación , Citocromo P-450 CYP1A2/metabolismo , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA