Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS One ; 10(11): e0142751, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26562415

RESUMEN

The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.


Asunto(s)
Ebolavirus/genética , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , Lentivirus/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , Virión/genética , África Occidental/epidemiología , Calibración , Células HEK293 , VIH-1/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Humanos , Técnicas de Amplificación de Ácido Nucleico/normas , ARN Viral/aislamiento & purificación , Estándares de Referencia
2.
Mol Cell Biol ; 32(21): 4472-81, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22949505

RESUMEN

Although it is vital that cells detect and respond to oxidative stress to allow adaptation and repair damage, the underlying sensing and signaling mechanisms that control these responses are unclear. Protein ubiquitinylation plays an important role in controlling many biological processes, including cell division. In Saccharomyces cerevisiae, ubiquitinylation involves a single E1 enzyme, Uba1, with multiple E2s and E3s providing substrate specificity. For instance, the conserved E2 Cdc34 ubiquitinylates many substrates, including the cyclin-dependent kinase inhibitor Sic1, targeting it for degradation to allow cell cycle progression. Here we reveal that, in contrast to other ubiquitin pathway E2 enzymes, Cdc34 is particularly sensitive to oxidative inactivation, through sequestration of the catalytic cysteine in a disulfide complex with Uba1, by levels of oxidant that do not reduce global ubiquitinylation of proteins. This Cdc34 oxidation is associated with (i) reduced levels of Cdc34-ubiquitin thioester forms, (ii) increased stability of at least one Cdc34 substrate, Sic1, and (iii) Sic1-dependent delay in cell cycle progression. Together, these data reveal that the differential sensitivity of a ubiquitin pathway E2 enzyme to oxidation is utilized as a stress-sensing mechanism to respond to oxidative stress.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular , División Celular , Peróxido de Hidrógeno/farmacología , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Ubiquitina , Enzimas Ubiquitina-Conjugadoras , Ubiquitinación
3.
Mol Cell Biol ; 32(22): 4651-61, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22966207

RESUMEN

The control of the cell cycle in eukaryotes is exerted in part by the coordinated action of a series of transcription factor complexes. This is exemplified by the Mcm1p-Fkh2p-Ndd1p complex in Saccharomyces cerevisiae, which controls the cyclical expression of the CLB2 cluster of genes at the G(2)/M phase transition. The activity of this complex is positively controlled by cyclin-dependent kinase (CDK) and polo kinases. Here, we demonstrate that the protein kinase Pkc1p works in the opposite manner to inhibit the activity of the Mcm1p-Fkh2p-Ndd1p complex and the expression of its target genes. In particular, Pkc1p causes phosphorylation of the coactivator protein Ndd1p. Reductions in Pkc1p activity and the presence of Pkc1p-insensitive Ndd1p mutant proteins lead to changes in the timing of CLB2 cluster expression and result in associated late cell cycle defects. This study therefore identifies an important role for Pkc1p in controlling the correct temporal expression of genes in the cell cycle.


Asunto(s)
Ciclo Celular/genética , Ciclina B/genética , Regulación Fúngica de la Expresión Génica , Proteína Quinasa C/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína 1 de Mantenimiento de Minicromosoma/genética , Proteína 1 de Mantenimiento de Minicromosoma/metabolismo , Mutación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 286(49): 42002-42016, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21994942

RESUMEN

The Hog1 stress-activated protein kinase regulates both stress responses and morphogenesis in Candida albicans and is essential for the virulence of this major human pathogen. Stress-induced Hog1 phosphorylation is regulated by the upstream MAPKK, Pbs2, which in turn is regulated by the MAPKKK, Ssk2. Here, we have investigated the role of phosphorylation of Hog1 and Pbs2 in Hog1-mediated processes in C. albicans. Mutation of the consensus regulatory phosphorylation sites of Hog1 (Thr-174/Tyr-176) and Pbs2 (Ser-355/Thr-359), to nonphosphorylatable residues, resulted in strains that phenocopied hog1Δ and pbs2Δ cells. Consistent with this, stress-induced phosphorylation of Hog1 was abolished in cells expressing nonphosphorylatable Pbs2 (Pbs2(AA)). However, mutation of the consensus sites of Pbs2 to phosphomimetic residues (Pbs2(DD)) failed to constitutively activate Hog1. Furthermore, Ssk2-independent stress-induced Hog1 activation was observed in Pbs2(DD) cells. Collectively, these data reveal a previously uncharacterized MAPKKK-independent mechanism of Hog1 activation in response to stress. Although Pbs2(DD) cells did not exhibit high basal levels of Hog1 phosphorylation, overexpression of an N-terminal truncated form of Ssk2 did result in constitutive Hog1 activation, which was further increased upon stress. Significantly, both Pbs2(AA) and Pbs2(DD) cells displayed impaired stress resistance and attenuated virulence in a mouse model of disease, whereas only Pbs2(AA) cells exhibited the morphological defects associated with loss of Hog1 function. This indicates that Hog1 mediates C. albicans virulence by conferring stress resistance rather than regulating morphogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Candida albicans/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alelos , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Mutagénesis , Mutación , Ósmosis , Fosforilación , Proteínas Quinasas/genética , Transducción de Señal , Virulencia
5.
Mol Biol Cell ; 18(11): 4603-14, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17804815

RESUMEN

The Hog1 mitogen-activated protein kinase (MAPK) plays a central role in stress responses in the human pathogen Candida albicans. Here, we have investigated the MAPK kinase kinase (MAPKKK)-dependent regulation of the pathway. In contrast to the Hog1 pathway in Saccharomyces cerevisiae, which is regulated by three MAPKKKs (Ssk2, Ssk22, and Ste11), our results demonstrate that Hog1 in C. albicans is regulated by a single MAPKKK Ssk2. Deletion of SSK2 results in comparable stress and morphological phenotypes exhibited by hog1Delta cells, and Ssk2 is required for the stress-induced phosphorylation and nuclear accumulation of Hog1, and for Hog1-dependent gene expression. Furthermore, phenotypes associated with deletion of SSK2 can be circumvented by expression of a phosphomimetic mutant of the MAPKK Pbs2, indicating that Ssk2 regulates Hog1 via activation of Pbs2. In S. cerevisiae, the Hog1 pathway is also regulated by the MAPKKK Ste11. However, we can find no connection between Ste11 and the regulation of Hog1 in C. albicans. Furthermore, expression of a chimeric Pbs2 protein containing the Ste11-dependent regulatory region of S. cerevisiae Pbs2, fails to stimulate Ste11-dependent stress signaling in C. albicans. Collectively, our data show that Ssk2 is the sole MAPKKK to relay stress signals to Hog1 in C. albicans and that the MAPK signaling network in C. albicans has diverged significantly from the corresponding network in S. cerevisiae.


Asunto(s)
Candida albicans/enzimología , Candida albicans/patogenicidad , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Eliminación de Gen , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación/genética , Fenotipo , Fosforilación , Unión Proteica
6.
Nature ; 444(7118): 494-8, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17122856

RESUMEN

Polo kinases have crucial conserved functions in controlling the eukaryotic cell cycle through orchestrating several events during mitosis. An essential element of cell cycle control is exerted by altering the expression of key regulators. Here we show an important function for the polo kinase Cdc5p in controlling cell-cycle-dependent gene expression that is crucial for the execution of mitosis in the model eukaryote Saccharomyces cerevisiae. In particular, we find that Cdc5p is temporally recruited to promoters of the cell-cycle-regulated CLB2 gene cluster, where it targets the Mcm1p-Fkh2p-Ndd1p transcription factor complex, through direct phosphorylation of the coactivator protein Ndd1p. This phosphorylation event is required for the normal temporal expression of cell-cycle-regulated genes such as CLB2 and SWI5 in G2/M phases. Furthermore, severe defects in cell division occur in the absence of Cdc5p-mediated phosphorylation of Ndd1p. Thus, polo kinase is required for the production of key mitotic regulators, in addition to previously defined roles in controlling other mitotic events.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Ciclina B/genética , Modelos Genéticos , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Factores de Transcripción/química , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...