Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Environ Res ; 252(Pt 1): 118756, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38552830

The evaluation of the ecotoxicological effects of the effluent after treatment with peracetic acid is relevant to help establish reference concentrations for the disinfection process and waste recovery. Therefore, the objective of this work was to evaluate the ecotoxicity of effluent from a bovine slaughterhouse treated with peracetic acid on Girardia tigrina. The toxicity bioassays for planaria were the acute test (LC50) and chronic assays: locomotion, regeneration, reproduction and fertility. The results showed that the effluent treated with peracetic acid showed less toxicity than the effluent without application of peracetic acid. The effluent after peracetic acid application showed a chronic toxic effect in the reduction of locomotor speed in all studied disinfectant concentrations (0.8, 1.6, 3.3 and 6.6 µg L-1 of peracetic acid) and a delay in the formation of G. tigrina photoreceptors at the concentration of 6.6 µg L-1 of peracetic acid. Peracetic acid concentrations of 0.8, 1.6 and 3.3 µg L-1 were not toxic for blastema regeneration, photoreceptor and auricle formation, fecundity and fertility. In addition, this study assists in defining doses of peracetic acid to be recommended in order to ensure the wastewater disinfection process without causing harm to aquatic organisms.


Abattoirs , Disinfectants , Peracetic Acid , Water Pollutants, Chemical , Peracetic Acid/toxicity , Animals , Cattle , Disinfectants/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Disinfection/methods , Wastewater/toxicity
2.
Environ Sci Pollut Res Int ; 30(41): 93779-93785, 2023 Sep.
Article En | MEDLINE | ID: mdl-37516699

Neonicotinoids are highly consumed systemic insecticides that mimic acetylcholine (ACh) with a specific mode of action at the nicotinic acetylcholine receptors (nAChRs). The insecticide Actara® (active ingredient thiamethoxam- TMX) is a commercial formulation widely used for the control of various agricultural pest species. However, negative effects of TMX have been observed in non-target organisms. This work aimed to evaluate the biological effects of the commercial formulation Actara® on the aquatic non-target and non-biting larvae of Chironomus xanthus (Diptera). The lethal (LC50) and sublethal (body length, head capsule width, cumulative emergence, and mean time to emergence-EmT50) effects were determined in two subsequent generations (P and F1). The estimated 48 h LC50 for C. xanthus larvae exposed to Actara® was 73.02 µg TMX/L. By looking at the sublethal effects of Actara on the life cycle parameters of C. xanthus, we determined that none of the concentrations used induced a significantly different response in the organisms, compared to the control treatment (NOEC > 2 µg TMX/L). However, the head capsule width in the parental (P) generation exposed to Actara (≥ 0.9 µg TMX/L) was significantly bigger than the head capsule width of control animals. Overall, our results highlight that, at environmentally relevant concentrations, the commercial formulation Actara® is non-toxic to C. xanthus.


Chironomidae , Insecticides , Animals , Thiamethoxam/pharmacology , Neonicotinoids/toxicity , Insecticides/toxicity , Larva , Nitro Compounds/toxicity
3.
Pest Manag Sci ; 79(6): 2255-2263, 2023 Jun.
Article En | MEDLINE | ID: mdl-36775861

BACKGROUND: Freshwater organisms are facing increasing salinity levels, not only due to natural environmental processes, but also human activities, which can cause several physiological adaptations to osmotic stress. Additionally, these organisms might also have to deal with contamination by microbial insecticides. Our main goal was to use Chironomus xanthus to assess the chronic effects of increasing the salinity and commercial formulations of the microbial insecticides based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) as active ingredients, respectively. RESULTS: A significant interaction of growth was observed between the biopesticide based on Bb and NaCl on the larvae of C. xanthus. Single exposure to NaCl and each one of the formulations demonstrated deleterious impacts not only on larval development, but also on the emergence success and emergence time of this nontarget insect, with potential consequences for freshwater ecosystems due to cascading effects. CONCLUSION: The chronic effects induced by both bioinsecticides show that these formulations can have environmental impacts on nontarget freshwater insects. © 2023 Society of Chemical Industry.


Bacillus thuringiensis , Beauveria , Chironomidae , Insecticides , Animals , Humans , Insecticides/pharmacology , Chironomidae/physiology , Sodium Chloride/pharmacology , Ecosystem , Insecta , Larva
4.
Ecotoxicol Environ Saf ; 250: 114513, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36610296

Thiamethoxam (TMX) is a systemic neonicotinoid that acts as a partial agonist of the nicotinic acetylcholine receptors (nAChRs). However, target species have shown resistance to formulations based on such neonicotinoids, which can also be expected for non-target insects. This research aimed to study the effects of a formulation based on TMX [Cruiser® 350 FS (CRZ)] on the life traits of Chironomus xanthus filial generation (F1) and compare it with the parental generation (P). Environmentally relevant concentrations of CRZ significantly decreased larvae growth P generation , also slowing and decreasing their emergence. Larvae of the F1 generation were less sensitive than their parents, suggesting that the progeny were able to thrive and perform basic physiological functions better than the parental generation. Our results highlight that insect resistance to neonicotinoids may be associated with the better performance of the filial generation, which is related to the change in affinities of the active ingredient for the sub-units constituting the nAChRs subtypes of F1 organisms, inherited from P organisms that were able to survive and reproduce. Moreover, further studies using biochemical and omics tools should be performed to disentangle the specific changes occurring at the nAChRs throughout insect development.


Chironomidae , Insecticides , Receptors, Nicotinic , Animals , Insecticides/pharmacology , Larva , Chironomidae/genetics , Thiamethoxam/pharmacology , Neonicotinoids/toxicity , Insecta , Receptors, Nicotinic/genetics , Nitro Compounds/toxicity
5.
Environ Sci Pollut Res Int ; 29(18): 27095-27103, 2022 Apr.
Article En | MEDLINE | ID: mdl-34981389

The fungicide difenoconazole, widely used to reduce the negative impacts of fungi diseases on areas with intensive farming, can reach freshwater systems causing deleterious effects on nontarget organisms. The acute and chronic toxicity of a commercial formulation containing 250 g L-1 of difenoconazole (Prisma®) as the active ingredient was assessed in the freshwater planarian Girardia tigrina. The endpoints evaluated were feeding rate, locomotion, regeneration, and sexual reproduction of planarians. The estimated 48 h LC50 of the commercial formulation on planarians expressed as the concentration of the active ingredient difenoconazole was 47.5 mg a.i.L-1. A significant decrease of locomotion (LOEC = 18.56 mg a.i.L-1), delayed regeneration (LOEC = 9.28 mg a.i.L-1), and sexual reproduction impairment, i.e., decreased fecundity and fertility rates (LOEC ≤ 1.16 mg a.i.L-1) were observed on planarians exposed to sublethal concentrations of the formulation. This study demonstrated the importance of using reproductive, physiological, and behavioral parameters as more sensitive and complementary tools to assess the deleterious effects induced by a commercial formulation of difenoconazole on a nontarget freshwater organism. The added value and importance of our research work, namely, the impairment of sexual reproduction of planarians, contributes to the development of useful tools for ecotoxicology and highlights the fact that those tools should be developed as guidelines for testing of chemicals. Our results showed that the use of reproductive parameters of Girardia tigrina would help to complement and achieve a better assessment of the risk posed by triazole fungicides to freshwater ecosystems.


Planarians , Water Pollutants, Chemical , Animals , Dioxolanes , Ecosystem , Ecotoxicology , Reproduction , Triazoles/toxicity , Water Pollutants, Chemical/toxicity
6.
Environ Sci Pollut Res Int ; 29(7): 10665-10674, 2022 Feb.
Article En | MEDLINE | ID: mdl-34528200

Bio-insecticides have been increasingly used worldwide as ecofriendly alternatives to pesticides, but data on their effects in non-target freshwater organisms is still scarce and limited to insects. The aim of this study was to determine the lethal and sub-lethal effects of the bio-insecticides Bac Control (based on Bacillus thuringiensis kurstaki-Btk) and Boveril (based on Beauveria bassiana-Bb) on regeneration, behavioral, and reproductive endpoints of the freshwater planarian Girardia tigrina. The estimated LC50-48h were > 800 mg a.i./L for Btk and 60.74 mg a.i./L for Bb. In addition, exposure to Btk significantly decreased locomotion and feeding activities of planarians (lowest observed effect concentration (LOEC) of 12.5 mg a.i./L Btk) and fecundity rate (LOEC = 3.12 mg a.i./L Btk), whereas exposure to Bb significantly delayed regeneration (LOEC = 0.75 mg a.i./L Bb) and decreased fecundity rate (1.5 mg a.i./L Bb) of planarians. Thus, both bio-insecticides induced deleterious sub-lethal effects on a non-insect freshwater invertebrate species. However, only Bb-based formulation affected the survival, fecundity rate, and regeneration at concentrations below the maximum predicted environmental concentration (PEC = 247 mg/L). Thus, care should be taken when using such formulations as alternatives to chemical insecticides near aquatic ecosystems.


Insecticides , Planarians , Water Pollutants, Chemical , Animals , Ecosystem , Fresh Water , Insecta , Insecticides/toxicity , Reproduction
7.
Environ Sci Pollut Res Int ; 27(27): 34223-34233, 2020 Sep.
Article En | MEDLINE | ID: mdl-32557035

Salinization in freshwaters is gradually increasing as a result of human activities and climatic changes. Higher salt content causes stress for freshwater organisms. Sodium chloride (NaCl) is among the most frequently occurring salts in freshwater ecosystems. The objective of the present study was to investigate the lethal and sublethal effects of NaCl on freshwater ecosystems, using as test organism the dipteran Chironomus xanthus and the planarian Girardia tigrina. Acute tests showed that C. xanthus was more sensitive (48-h LC50 (median lethal concentration) of 2.97 g NaCl L-1) than G. tigrina (48-h LC50 of 7.77 g NaCl L-1). C. xanthus larvae growth rate (larvae length and head capsule width) was significantly reduced under exposure to concentrations as low as 0.19 g L-1 NaCl and higher. A delay in the emergence time (EmT50) was also demonstrated for the same concentration. Sublethal NaCl effects in G. tigrina included feeding inhibition (LOEC (lowest observed effect concentration) of 0.4 g L-1), reduced locomotion (LOEC = 0.2 g L-1), and 24-48-h blastema regeneration (LOEC = 0.2 g L-1 and 0.1 g L-1, respectively). The results demonstrated the toxicity of NaCl to C. xanthus and G. tigrina including sublethal effects that can result in negative consequences for populations in natural freshwaters under salinization.


Chironomidae , Water Pollutants, Chemical , Animals , Ecosystem , Fresh Water , Sodium Chloride
8.
Chemosphere ; 256: 127171, 2020 Oct.
Article En | MEDLINE | ID: mdl-32470743

Freshwater ecosystems are vulnerable to residual concentrations of chemical agents from anthropogenic activities, and the real impacts of such compounds can only be evaluated accurately using ecotoxicological tests. The assessment of ecotoxicological effects of peracetic acid (PAA) and the active chlorine of calcium hypochlorite (Ca(ClO)2) on the insect Chironomus xanthus Meigen (Diptera: Chironomidae) is highly relevant as there are few reports on its effects in fresh water ecosystems. To our best knowledge, this is the first study to assess the chronic toxicity of the compounds to C. xanthus. The toxicity bioassays for C. xanthus included the acute effect (CL50) and the chronic effects based on body length, head width, and cumulative emergence. The results obtained in the acute effect tests indicated that the active chlorine of Ca(ClO)2 is 14 fold more toxic than PAA to C. xanthus. In sublethal evaluations, the active chlorine of Ca(ClO)2 presented higher toxicity than PAA in terms of percentage emergence, body development, and head width. In general, the results showed lower PAA toxicity relative to the active chlorine of Ca(ClO)2, demonstrating that PAA is a promising substitute for chlorinated disinfectants. In addition, the study facilitates the establishment of reference values for the safe release of effluents treated with PAA into water bodies.


Calcium Compounds/toxicity , Chironomidae/drug effects , Chlorine/toxicity , Disinfectants/toxicity , Peracetic Acid/toxicity , Animals , Chlorides , Ecosystem , Ecotoxicology/methods , Fresh Water/chemistry , Halogenation
...