Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Phys Rev Lett ; 126(13): 132502, 2021 Apr 02.
Article En | MEDLINE | ID: mdl-33861122

Isotopic distributions of fragments from fission of the neutron-deficient ^{178}Hg nuclide are reported. This experimental observable is obtained for the first time in the region around lead using an innovative approach based on inverse kinematics and the coincidence between the large acceptance magnetic spectrometer VAMOS++ and a new detection arm close to the target. The average fragment N/Z ratio and prompt neutron M_{n} multiplicity are derived and compared with current knowledge from actinide fission. A striking consistency emerges, revealing the unexpected dominant role of the proton subsystem with atomic number between the Z=28 and 50 magic numbers. The origin of nuclear charge polarization in fission and fragment deformation at scission are discussed.

2.
Phys Rev Lett ; 109(1): 012501, 2012 Jul 06.
Article En | MEDLINE | ID: mdl-23031099

The rotational band structure of the Z=104 nucleus (256)Rf has been observed up to a tentative spin of 20ℏ using state-of-the-art γ-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-j orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing in superheavy nuclei which is essential to ensure the validity of contemporary nuclear models in this mass region. The data obtained show that there is no deformed shell gap at Z=104, which is predicted in a number of current self-consistent mean-field models.

3.
Phys Rev Lett ; 102(21): 212501, 2009 May 29.
Article En | MEDLINE | ID: mdl-19519098

The rotational band structure of 255Lr has been investigated using advanced in-beam gamma-ray spectroscopic techniques. To date, 255Lr is the heaviest nucleus to be studied in this manner. One rotational band has been unambiguously observed and strong evidence for a second rotational structure was found. The structures are tentatively assigned to be based on the 1/2-[521] and 7/2-[514] Nilsson states, consistent with assignments from recently obtained alpha decay data. The experimental rotational band dynamic moment of inertia is used to test self-consistent mean-field calculations using the Skyrme SLy4 interaction and a density-dependent pairing force.

4.
Phys Rev Lett ; 98(13): 132503, 2007 Mar 30.
Article En | MEDLINE | ID: mdl-17501196

A rotational band has been unambiguously observed in an odd-proton transfermium nucleus for the first time. An in-beam gamma-ray spectroscopic study of 101/251Md has been performed using the gamma-ray array JUROGAM combined with the gas-filled separator RITU and the focal plane device GREAT. The experimental results, compared to Hartree-Fock-Bogolyubov calculations, lead to the interpretation that the rotational band is built on the [521]1/2(-) Nilsson state.

5.
Phys Rev Lett ; 97(15): 152501, 2006 Oct 13.
Article En | MEDLINE | ID: mdl-17155324

Gamma decays from excited states up to Jpi=6+ in the N=Z-2 nucleus 54Ni have been identified for the first time. Level energies are compared with those of the isobars 54Co and 54Fe and of the cross-conjugate nuclei of mass A=42. The good but puzzling f7/ cross-conjugate symmetry in mirror and triplet energy differences is analyzed. Shell model calculations reproduce the new data but the necessary nuclear charge-dependent phenomenology is not fully explained by modern nucleon-nucleon potentials.

6.
Phys Rev Lett ; 93(26 Pt 1): 262501, 2004 Dec 31.
Article En | MEDLINE | ID: mdl-15697971

The 5H system was produced in the 3H(t,p)5H reaction studied with a 58 MeV tritium beam at small c.m. angles. High statistics data were used to reconstruct the energy and angular correlations between the 5H decay fragments. A broad structure in the 5H missing mass spectrum showing up above 2.5 MeV was identified as a mixture of the 3/2+ and 5/2+ states. The data also present evidence that the 1/2+ ground state of 5H is located at about 2 MeV.

7.
Phys Rev Lett ; 87(7): 072501, 2001 Aug 13.
Article En | MEDLINE | ID: mdl-11497885

Excited states in (216)Th were investigated via prompt and delayed gamma decays and the recoil-decay tagging method. The decay schemes of the I(pi) = (8+), t(1/2) = 128(8) micros, the I(pi) = (11-), t(1/2) = 615(55) ns, and the I(pi) = (14+), t(1/2) > or = 130 ns isomers were established. The configuration pi h(9/2)f(7/2) is assigned to the I(pi) = (8+) isomer, which implies that the h(9/2) and f(7/2) states are nearly degenerate. This is ascribed to increased binding of the f(7/2) orbital by its coupling to a low-lying I(pi) = (3-) state at E(x) = 1687 keV. The role of octupole and pairing correlations for a Z = 92 shell closure prediction is discussed on the basis of shell model calculations.

8.
Phys Rev Lett ; 86(4): 600-3, 2001 Jan 22.
Article En | MEDLINE | ID: mdl-11177891

The two-neutron halo nucleus (14)Be has been investigated in a kinematically complete measurement of the fragments ((12)Be and neutrons) produced in dissociation at 35 MeV/nucleon on C and Pb targets. Two-neutron removal cross sections, neutron angular distributions, and invariant mass spectra were measured, and the contributions from electromagnetic dissociation (EMD) were deduced. Comparison with three-body model calculations suggests that the halo wave function contains a large nu(2s(1/2))(2) admixture. The EMD invariant mass spectrum exhibited enhanced strength near threshold consistent with a nonresonant soft-dipole excitation.

...