Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Technol Innov ; 34: 103563, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706941

RESUMEN

The practical application of electrochemical oxidation technology for the removal of surfactants from greywater was evaluated using sodium dodecyl sulfate (SDS) as a model surfactant. Careful selection of electrocatalysts and optimization of operational parameters demonstrated effective SDS removal in treating a complex greywater matrix with energy consumption below 1 kWh g-1 COD (Chemical Oxygen Demand), paving the way for a more sustainable approach to achieving surfactant removal in greywater treatment when aiming for decentralized water reuse. Chromatographic techniques identified carboxylic acids as key byproducts prior to complete mineralization. These innovative approaches represent a novel pathway for harnessing electrochemical technologies within decentralized compact devices, offering a promising avenue for further advancements in this field.

2.
Small ; 20(3): e2304547, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37621039

RESUMEN

The electrogeneration of hydrogen peroxide (H2 O2 ) via the oxygen reduction reaction is a crucial process for advanced water treatment technologies. While significant effort is being devoted to developing highly reactive materials, gas provision systems used in these processes are receiving less attention. Here, using oxygen nanobubbles to improve the gas efficiency of the electrogeneration of H2 O2 is proposed. Aeration with nanobubbles is compared to aeration with macrobubbles under an identical experimental set-up, with nanobubbles showing a much higher gas-liquid volumetric mass transfer coefficient (KL a) of 2.6 × 10-2 min-1 compared to 2.7 × 10-4 min-1 for macrobubbles. Consequently, nanobubbles exhibit a much higher gas efficiency using 60% of O2 delivered to the system compared to 0.19% for macrobubbles. Further, it is observed that the electrogeneration of H2 O2 using carbon felt electrodes is enhanced using nanobubbles. Under the same dissolved oxygen levels, nanobubbles boost the reaction yield to 84%, while macrobubbles yield only 53.8%. To the authors' knowledge, this is the first study to investigate the use of nanobubbles in electrochemical reactions and demonstrate their ability to enhance gas efficiency and electrocatalytic response. These findings have important implications for developing more efficient chemical and electrochemical processes operating under gas-starving systems.

3.
J Environ Manage ; 348: 119298, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839202

RESUMEN

Pharmaceuticals excreted after administration can pollute water sources given their ineffective removal in conventional wastewater treatment plant. Among the techniques used during tertiary wastewater treatment, adsorption is an effective and cost-efficient method for removing antibiotics. This study aimed to investigate the adsorption of ciprofloxacin (CIP) on metal-doped granular activated carbon (GAC) and evaluate the impact of urine on CIP adsorption for pristine, pre-oxidized, and metal-doped GAC. The results showed that the uptake of CIP by iron (Fe)-doped GAC was higher than Ag-doped, pre-oxidized, and pristine GAC in single-solute isotherms (DI water). This higher uptake was attributed to the presence of Fe content (1.2%) on the carbon surface, which can strongly interact with zwitterionic CIP at a neutral pH. However, when synthetic human urine was introduced, the adsorption of CIP was negatively affected due to pore blockage and competition for available sorption sites on the GAC. Among the four types of GACs tested, the lowest reduction in CIP uptake in the urine solution was observed for Fe-doped GAC followed (%17) by pre-oxidized (64%), Ag-doped (%69), and pristine F400 (76%) carbon. These results suggested that the complexation between CIP and Fe-doped GAC in urine was stronger due to its higher functionalization compared to Ag-doped, pre-oxidized, and pristine GAC. As the equilibrium concentration of CIP increased, the competition between CIP and urine decreased on the surface of Fe-doped carbon, owing to the limited competition from urine for the available active sorption sites.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Ciprofloxacina/química , Adsorción , Metales/química , Antibacterianos/química , Agua , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
4.
Chemosphere ; 342: 140079, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37709061

RESUMEN

The current literature lacks a comprehensive discussion on the trade-off between pollutant degradation/mineralization and treatment time costs in utilizing UV light in combination with H2O2-based electrochemical advanced oxidation processes (EAOPs). The present study sheds light on the benefits of using the photoelectro-Fenton (PEF) process with UVA or UVC for methylparaben (MetP) degradation in real drinking water. Although light boosts the photodegradation of refractory Fe(III) complexes and the photolysis of H2O2 (with UVC only), the energy-intensive nature of light-based treatments is acknowledged. To help tackle the high energy consumption issue, a novel approach was employed: partial application of UVA or UVC light after a predetermined electro-Fenton electrolysis time. The proposed treatment approach yielded satisfactory comparable results to those obtained from the application of PEF/UVA or PEF/UVC in terms of total organic carbon removal (ca. 100%), with notably lower energy consumption (ca. 50%). The study delves into the combined method's feasibility, analyzing pollutant degradation/mineralization process and overall energy consumption. The research identifies possible degradation routes based on intermediate detection and radical quenching experiments. Finally, toxicological assessments evaluate the toxicity levels of MetP and its intermediates. The findings of this study bring meaningful contributions to the fore and point to the highly promising potential of the proposed approach, in terms of sustainability and cost-effectiveness, when applied for decentralized water treatment.


Asunto(s)
Rayos Ultravioleta , Contaminantes Químicos del Agua , Peróxido de Hidrógeno/química , Hierro/química , Técnicas Electroquímicas/métodos , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Electrodos
5.
Sci Total Environ ; 878: 163047, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36958544

RESUMEN

As well established in the literature, residual toxicity is an important parameter for evaluating the sanitary and environmental safety of water treatment processes, and this parameter becomes even more crucial when chlorine-based processes are applied for water treatment. Eliminating initial toxicity or preventing its increase after water treatment remains a huge challenge mainly due to the formation of highly toxic disinfection by-products (DBPs) that stem from the degradation of organic contaminants or the interaction of the chlorine-based oxidants with different matrix components. In this review, we present a comprehensive discussion regarding the toxicological aspects of water treated using chlorine-based advanced oxidation processes (AOPs) and the recent findings related to the factors influencing toxicity, and provide directions for future research in the area. The review begins by shedding light on the advances made in the application of free chlorine AOPs and the findings from studies conducted using electrochemical technologies based on free chlorine generation. We then delve into the insights and contributions brought to the fore regarding the application of NH2Cl- and ClO2-based treatment processes. Finally, we broaden our discussion by evaluating the toxicological assays and predictive models employed in the study of residual toxicity and provide an overview of the findings reported to date on this subject matter, while giving useful insights and directions for future research on the topic.

6.
Chemosphere ; 305: 135497, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35764110

RESUMEN

Boron-doped diamond (BDD) electrodes are regarded as the most promising catalytic materials that are highly efficient and suitable for application in advanced electrochemical oxidation processes targeted at the removal of recalcitrant contaminants in different water matrices. Improving the synthesis of these electrodes through the enhancement of their morphology, structure and stability has become the goal of the material scientists. The present work reports the use of an ultranano-diamond electrode with a highly porous structure (B-UNCDWS/TDNT/Ti) for the treatment of water containing carbaryl. The application of the proposed electrode at current density of 75 mA cm-2 led to the complete removal of the pollutant (carbaryl) from the synthetic medium in 30 min of electrolysis with an electric energy per order of 4.01 kWh m-3 order-1. The results obtained from the time-course analysis of the carboxylic acids and nitrogen-based ions present in the solution showed that the concentrations of nitrogen-based ions were within the established maximum levels for human consumption. Under optimal operating conditions, the proposed electrode was successfully employed for the complete removal of carbaryl in real water. Thus, the findings of this study show that the unique, easy-to-prepare BDD-based electrode proposed in this study is a highly efficient tool which has excellent application potential for the removal of recalcitrant pollutants in water.


Asunto(s)
Boro , Contaminantes Químicos del Agua , Boro/química , Carbaril/análisis , Electrodos , Humanos , Nitrógeno/análisis , Oxidación-Reducción , Porosidad , Agua , Contaminantes Químicos del Agua/análisis
7.
Environ Res ; 204(Pt A): 112027, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34508772

RESUMEN

The present work investigates the electrocatalytic performance of two different morphologies of boron doped-diamond film electrode (microcrystalline diamond - MCD, and nanocrystalline diamond - NCD) used in electrochemical oxidation for the removal of the antibiotic ciprofloxacin (CIP). A thorough study was conducted regarding the formation of the MCD and NCD films through the adjustment of methane in CH4/H2 gas mixture, and the two films were compared in terms of crystalline structure, apparent doping level, and electrochemical properties. The physicochemical results showed that the NCD film had higher sp2 carbon content and greater doping level; this contributed to improvements in its surface roughness, as well as its specific capacitance and charge transfer, which consequently enhanced its electrocatalytic activity in comparison with the MCD. The results obtained from CIP removal and mineralization assays performed in sulfate medium also showed that the NCD was more efficient than the MCD under all the current densities investigated. The effects of CIP concentration and the evolution of the final by-products, including short-chain carboxylic acids and inorganic ions, were also investigated. The electrochemical performance of the NCD was evaluated in different aqueous matrices, including chloride medium, real wastewater and simulated urine. The application of the NCD led to complete or almost complete CIP degradation, regardless of the medium employed. The kinetic constant rates obtained under the different media investigated were as follows: synthetic urine (0.0416 min-1 - R2 = 0.991) < real wastewater (0.0923 min-1 R2 = 0.997) < synthetic matrix containing chloride (0.1992 min-1 - R2 = 0.995); this shows that the pollutant degradation was affected by the type of aqueous matrix and the oxidants that were electrogenerated in situ. The results obtained from the analysis of electrical energy per order (EE/O) showed that the treatment of simulated urine spkiked with required the highest energy consumption, followed by the real effluent and synthetic matrix containing chloride. The present study proves the viability of electrocatalytic nanostructured materials to the treatment of antibiotics in complex matrices.


Asunto(s)
Diamante , Contaminantes Químicos del Agua , Boro , Ciprofloxacina , Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...