Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Invertebr Pathol ; 200: 107972, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37460056

RESUMEN

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) transmits the Gram-negative bacterium 'Candidatus Liberibacter asiaticus' that causes citrus greening disease. While chemical control has been the main management strategy for limiting D. citri, the widespread usage of chemical sprays has decreased the susceptibility of D. citri to most insecticides. Pesticidal proteins produced by the bacterium Bacillus thuringiensis (Bt) are active against a wide variety of insects and provide a more sustainable approach to insect control. Herein, we investigated the impact of 'Ca. L. asiaticus' infection of D. citri on the toxicity of two Bt proteins (Mpp51Aa1 and Cry1Ba1). Proteins were delivered to healthy and 'Ca. L. asiaticus'-infected D. citri via topical feeding application. The LC50 values of Mpp51Aa1 and Cry1Ba1 were calculated for both nymphs and adults. Additionally, we evaluated the effect of each protein on the survival probability and life span of healthy and 'Ca. L. asiaticus'-infected D. citri. The LC50 values indicated that adults and nymphs were more susceptible to Mpp51Aa1 than to Cry1Ba1 in both healthy and 'Ca. L. asiaticus'-infected D. citri. 'Ca. L. asiaticus'-infected adults and nymphs were more susceptible to Mpp51Aa1 and Cry1Ba1 than healthy insects, and nymphs were more susceptible to Mpp51Aa1 and Cry1Ba1 than adults. Moreover, we found that Mpp51Aa1 had a greater impact than Cry1Ba1 on the survival and lifespan of adults, and 'Ca. L. asiaticus'-infected insects were more affected by these pesticidal proteins than healthy adults. These results have important implications for the use of pesticidal proteins in D. citri management in Florida and elsewhere given the widespread presence of 'Ca. L. asiaticus' in the D. citri population. In this era of eco-friendly control strategies, Bt-derived pesticidal proteins provide a promising avenue to reducing the application of chemical insecticides for D. citri management.


Asunto(s)
Bacillus thuringiensis , Citrus , Hemípteros , Insecticidas , Plaguicidas , Rhizobiaceae , Animales , Liberibacter , Hemípteros/microbiología , Insecticidas/farmacología , Enfermedades de las Plantas/microbiología
2.
J Invertebr Pathol ; 195: 107834, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244507

RESUMEN

Hemipteran pests are among the most important threats to agricultural production. Losses associated with these insects result from both feeding-associated damage and the transmission of plant pathogens by some species. Key among hemipteran pests of agricultural importance are stink bugs, whitefly, aphids and psyllids. While bacteria provide an excellent resource for identification of environmentally benign pesticidal proteins for use against pest insects, relatively few with activity against hemipteran species have been identified. In this comprehensive review including the patent literature, we describe physiological features unique to Hemiptera that may restrict the toxicity of bacterial pesticidal proteins, provide an overview of Hemiptera-active pesticidal proteins and associated structural classes, and summarize biotechnological strategies used for optimization of toxicity against target hemipteran species.


Asunto(s)
Bacillus thuringiensis , Hemípteros , Heterópteros , Plaguicidas , Animales , Bacillus thuringiensis/fisiología , Proteínas Bacterianas/química , Control Biológico de Vectores , Insectos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA