Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Pathol ; 25(6): e13468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38808392

RESUMEN

Phytophthora pathogens possess hundreds of effector genes that exhibit diverse expression patterns during infection, yet how the expression of effector genes is precisely regulated remains largely elusive. Previous studies have identified a few potential conserved transcription factor binding sites (TFBSs) in the promoters of Phytophthora effector genes. Here, we report a MYB-related protein, PsMyb37, in Phytophthora sojae, the major causal agent of root and stem rot in soybean. Yeast one-hybrid and electrophoretic mobility shift assays showed that PsMyb37 binds to the TACATGTA motif, the most prevalent TFBS in effector gene promoters. The knockout mutant of PsMyb37 exhibited significantly reduced virulence on soybean and was more sensitive to oxidative stress. Consistently, transcriptome analysis showed that numerous effector genes associated with suppressing plant immunity or scavenging reactive oxygen species were down-regulated in the PsMyb37 knockout mutant during infection compared to the wild-type P. sojae. Several promoters of effector genes were confirmed to drive the expression of luciferase in a reporter assay. These results demonstrate that a MYB-related transcription factor contributes to the expression of effector genes in P. sojae.


Asunto(s)
Phytophthora , Enfermedades de las Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Phytophthora/patogenicidad , Phytophthora/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Glycine max/microbiología , Glycine max/genética , Virulencia/genética
2.
J Adv Res ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442853

RESUMEN

INTRODUCTION: Metformin (MET), derived from Galega officinalis, stands as the primary first-line medication for the treatment of type 2 diabetes (T2D). Despite its well-documented benefits in mammalian cellular processes, its functions and underlying mechanisms in plants remain unclear. OBJECTIVES: This study aimed to elucidate MET's role in inducing plant immunity and investigate the associated mechanisms. METHODS: To investigate the impact of MET on enhancing plant immune responses, we conducted assays measuring defense gene expression, reactive oxygen species (ROS) accumulation, mitogen-activated protein kinase (MAPK) phosphorylation, and pathogen infection. Additionally, surface plasmon resonance (SPR) and microscale thermophoresis (MST) techniques were employed to identify MET targets. Protein-protein interactions were analyzed using a luciferase complementation assay and a co-immunoprecipitation assay. RESULTS: Our findings revealed that MET boosts plant disease resistance by activating MAPKs, upregulating the expression of downstream defense genes, and fortifying the ROS burst. CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28) was identified as a target of MET. It inhibited the interaction between BOTRYTIS-INDUCED KINASE 1 (BIK1) and CPK28, blocking CPK28 threonine 76 (T76) transphosphorylation by BIK1, and alleviating the negative regulation of immune responses by CPK28. Moreover, MET enhanced disease resistance in tomato, pepper, and soybean plants. CONCLUSION: Collectively, our data suggest that MET enhances plant immunity by blocking BIK1-mediated CPK28 phosphorylation.

4.
BMC Plant Biol ; 24(1): 30, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182981

RESUMEN

BACKGROUND: Potato late blight, caused by Phytophthora infestans, is the most devastating disease on potato. Dissecting critical immune components in potato will be supportive for engineering P. infestans resistance. Upon pathogens attack, plant Ca2+ signature is generated and decoded by an array of Ca2+ sensors, among which calcineurin B-like proteins (CBLs) coupled with plant specific CBL-interacting protein kinases (CIPKs) are much less explored in plant immunity. RESULTS: In this study, we identified that two differential potato CBL-CIPK modules regulate plant defense responses against Phytophthora and ROS production, respectively. By deploying virus-induced gene silencing (VIGS) system-based pathogen inoculation assays, StCBL3 was shown to negatively regulate Phytophthora resistance. Consistently, StCBL3 was further found to negatively regulate PTI and ETI responses in Nicotiana benthamiana. Furthermore, StCIPK7 was identified to act together with StCBL3 to negatively regulate Phytophthora resistance. StCIPK7 physically interacts with StCBL3 and phosphorylates StCBL3 in a Ca2+-dependent manner. StCBL3 promotes StCIPK7 kinase activity. On the other hand, another StCBL3-interacting kinase StCIPK24 negatively modulating flg22-triggered accumulation of reactive oxygen species (ROS) by interacting with StRBOHB. CONCLUSIONS: Together, these findings demonstrate that the StCBL3-StCIPK7 complex negatively modulates Phytophthora resistance and StCBL3-StCIPK24 complex negatively regulate ROS production. Our results offer new insights into the roles of potato CBL-CIPK in plant immunity and provide valuable gene resources to engineer the disease resistance potato in the future.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Calcio , Solanum tuberosum/genética , Especies Reactivas de Oxígeno , Inmunidad de la Planta/genética , Proteínas de Plantas/genética
5.
Mol Plant Microbe Interact ; 37(1): 15-24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37856777

RESUMEN

Oomycete pathogens secrete numerous crinkling and necrosis proteins (CRNs) to manipulate plant immunity and promote infection. However, the functional mechanism of CRN effectors is still poorly understood. Previous research has shown that the Phytophthora sojae effector PsCRN108 binds to the promoter of HSP90s and inhibits their expression, resulting in impaired plant immunity. In this study, we found that in addition to HSP90, PsCRN108 also suppressed other Heat Shock Protein (HSP) family genes, including HSP40. Interestingly, PsCRN108 inhibited the expression of NbHSP40 through its promoter, but did not directly bind to its promoter. Instead, PsCRN108 interacted with NbCAMTA2, a negative regulator of plant immunity. NbCAMTA2 was a negative regulator of NbHSP40 expression, and PsCRN108 could promote such inhibition activity of NbCAMTA2. Our results elucidated the multiple roles of PsCRN108 in the suppression of plant immunity and revealed a new mechanism by which the CRN effector hijacked transcription factors to affect immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Phytophthora , Phytophthora/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Choque Térmico/metabolismo , Inmunidad de la Planta , Enfermedades de las Plantas
7.
Cell Rep ; 42(11): 113391, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37930886

RESUMEN

Protein homeostasis is vital for organisms and requires chaperones like the conserved Bcl-2-associated athanogene (BAG) co-chaperones that bind to the heat shock protein 70 (HSP70) through their C-terminal BAG domain (BD). Here, we show an unconventional BAG subfamily exclusively found in oomycetes. Oomycete BAGs feature an atypical N-terminal BD with a short and oomycete-specific α1 helix (α1'), plus a C-terminal small heat shock protein (sHSP) domain. In oomycete pathogen Phytophthora sojae, both BD-α1' and sHSP domains are required for P. sojae BAG (PsBAG) function in cyst germination, pathogenicity, and unfolded protein response assisting in 26S proteasome-mediated degradation of misfolded proteins. PsBAGs form homo- and heterodimers through their unique BD-α1' to function properly, with no recruitment of HSP70s to form the common BAG-HSP70 complex found in other eukaryotes. Our study highlights an oomycete-exclusive protein homeostasis mechanism mediated by atypical BAGs, which provides a potential target for oomycete disease control.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Oomicetos , Proteínas HSP70 de Choque Térmico/metabolismo , Proteostasis , Virulencia , Chaperonas Moleculares/metabolismo , Oomicetos/metabolismo
8.
Nat Commun ; 14(1): 5646, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704617

RESUMEN

Public metabolites such as vitamins play critical roles in maintaining the ecological functions of microbial community. However, the biochemical and physiological bases for fine-tuning of public metabolites in the microbiome remain poorly understood. Here, we examine the interactions between myxobacteria and Phytophthora sojae, an oomycete pathogen of soybean. We find that host plant and soil microbes complement P. sojae's auxotrophy for thiamine. Whereas, myxobacteria inhibits Phytophthora growth by a thiaminase I CcThi1 secreted into extracellular environment via outer membrane vesicles (OMVs). CcThi1 scavenges the required thiamine and thus arrests the thiamine sharing behavior of P. sojae from the supplier, which interferes with amino acid metabolism and expression of pathogenic effectors, probably leading to impairment of P. sojae growth and pathogenicity. Moreover, myxobacteria and CcThi1 are highly effective in regulating the thiamine levels in soil, which is correlated with the incidence of soybean Phytophthora root rot. Our findings unravel a novel ecological tactic employed by myxobacteria to maintain the interspecific equilibrium in soil microbial community.


Asunto(s)
Myxococcales , Phytophthora , Glycine max , Tiamina , Rizosfera , Vesícula
9.
Nat Commun ; 14(1): 5622, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699893

RESUMEN

Potato late blight caused by Phytophthora infestans is a devastating disease worldwide. Unlike other plant pathogens, double-stranded RNA (dsRNA) is poorly taken up by P. infestans, which is a key obstacle in using dsRNA for disease control. Here, a self-assembled multicomponent nano-bioprotectant for potato late blight management is designed based on dsRNA and a plant elicitor. Nanotechnology overcomes the dsRNA delivery bottleneck for P. infestans and extends the RNAi protective window. The protective effect of nano-enabled dsRNA against infection arises from a synergistic mechanism that bolsters the stability of dsRNA and optimizes its effective intracellular delivery. Additionally, the nano-enabled elicitor enhances endocytosis and amplifies the systemic defense response of the plants. Co-delivery of dsRNA and an elicitor provides a protective effect via the two aspects of pathogen inhibition and elevated plant defense mechanisms. The multicomponent nano-bioprotectant exhibits superior control efficacy compared to a commercial synthetic pesticide in field conditions. This work proposes an eco-friendly strategy to manage devastating plant diseases and pests.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Endocitosis , Inhibición Psicológica , Nanotecnología , ARN Bicatenario
10.
Hortic Res ; 10(2): uhac255, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37533673

RESUMEN

Elicitins are microbe-associated molecular patterns produced by oomycetes to elicit plant defense. It is still unclear whether elicitins derived from non-pathogenic oomycetes can be used as bioactive molecules for disease control. Here, for the first time we identify and characterize an elicitin named PpEli2 from the soil-borne oomycete Pythium periplocum, which is a non-pathogenic mycoparasite colonizing the root ecosystem of diverse plant species. Perceived by a novel cell surface receptor-like protein, REli, that is conserved in various plants (e.g. tomato, pepper, soybean), PpEli2 can induce hypersensitive response cell death and an immunity response in Nicotiana benthamiana. Meanwhile, PpEli2 enhances the interaction between REli and its co-receptor BAK1. The receptor-dependent immune response triggered by PpEli2 is able to protect various plant species against Phytophthora and fungal infections. Collectively, our work reveals the potential agricultural application of non-pathogenic elicitins and their receptors in conferring broad-spectrum resistance for plant protection.

11.
Comput Struct Biotechnol J ; 21: 4070-4078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649710

RESUMEN

Transmembrane kinases (TMKs) are important mediators of cellular signaling cascades. The kinase domains of most metazoan and plant TMKs belong to the serine/threonine/tyrosine kinase (S/T/Y-kinase) superfamily. They share a common origin with prokaryotic kinases and have diversified into distinct subfamilies. Diverse members of the eukaryotic crown radiation such as amoebae, ciliates, and red and brown algae (grouped here under the umbrella term "protists") have long diverged from higher eukaryotes since their ancient common ancestry, making them ideal organisms for studying TMK evolution. Here, we developed an accurate and high-throughput pipeline to predict TMKomes in cellular organisms. Cross-kingdom analyses revealed distinct features of TMKomes in each grouping. Two-transmembrane histidine kinases constitute the main TMKomes of bacteria, while metazoans, plants, and most protists have a large proportion of single-pass TM S/T/Y-kinases. Phylogenetic analyses classified most protist S/T/Y-kinases into three clades, with clades II and III specifically expanded in amoebae and oomycetes, respectively. In contrast, clade I kinases were widespread in all protists examined here, and likely shared a common origin with other eukaryotic S/T/Y-kinases. Functional annotation further showed that most non-kinase domains were grouping-specific, suggesting that their recombination with the more conserved kinase domains led to the divergence of S/T/Y-kinases. However, we also found that protist leucine-rich repeat (LRR)- and G-protein-coupled receptor (GPCR)-type TMKs shared similar sensory domain architectures with respective plant and animal TMKs, despite that they belong to distinct kinase subfamilies. Collectively, our study revealed the functional diversity of TMKomes and the distinct origins of S/T/Y-kinases in protists.

12.
Nat Commun ; 14(1): 4593, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524729

RESUMEN

Plant cell-surface leucine-rich repeat receptor-like kinases (LRR-RLKs) and receptor-like proteins (LRR-RLPs) form dynamic complexes to receive a variety of extracellular signals. LRR-RLKs are also widespread in oomycete pathogens, whereas it remains enigmatic whether plant and oomycete LRR-RLKs could mediate cell-to-cell communications between pathogen and host. Here, we report that an LRR-RLK from the soybean root and stem rot pathogen Phytophthora sojae, PsRLK6, can activate typical pattern-triggered immunity in host soybean and nonhost tomato and Nicotiana benthamiana plants. PsRLK6 homologs are conserved in oomycetes and also exhibit immunity-inducing activity. A small region (LRR5-6) in the extracellular domain of PsRLK6 is sufficient to activate BAK1- and SOBIR1-dependent immune responses, suggesting that PsRLK6 is likely recognized by a plant LRR-RLP. Moreover, PsRLK6 is shown to be up-regulated during oospore maturation and essential for the oospore development of P. sojae. Our data provide a novel type of microbe-associated molecular pattern that functions in the sexual reproduction of oomycete, and a scenario in which a pathogen LRR-RLK could be sensed by a plant LRR-RLP to mount plant immunity.


Asunto(s)
Phytophthora , Phytophthora/metabolismo , Plantas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Tirosina Quinasas , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant Physiol ; 193(2): 1036-1044, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37399251

RESUMEN

Soybean (Glycine max L. Merrill) is one of the most important economical crops. A large number of whole-genome resequencing datasets have been generated and are increasingly expanded for exploring genetic diversity and mining important quantitative trait loci. Most genome-wide association studies have focused on single-nucleotide polymorphisms, short insertions, and deletions. Nevertheless, structure variants mainly caused by transposon element mobilization are not fully considered. To fill this gap, we uniformly processed the publicly available whole-genome resequencing data from 5,521 soybean germplasm accessions and built an online soybean transposon insertion polymorphisms database named Soybean Transposon Insertion Polymorphisms Database (SoyTIPdb) (https://biotec.njau.edu.cn/soytipdb). The collected germplasm accessions derived from more than 45 countries and 160 regions representing the most comprehensive genetic diversity of soybean. SoyTIPdb implements easy-to-use query, analysis, and browse functions to help understand and find meaningful structural variations from TE insertions. In conclusion, SoyTIPdb is a valuable data resource and will help soybean breeders/researchers take advantage of the whole-genome sequencing datasets available in the public depositories.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN , Genoma de Planta/genética
14.
Mol Plant Pathol ; 24(8): 932-946, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092279

RESUMEN

Phytophthora capsici is a notorious pathogen that infects various economically important plants and causes serious threats to agriculture worldwide. Plants deploy a variety of plant secondary metabolites to fend off pathogen attacks, but the molecular mechanisms are largely unknown. In this study, we screened 11 plant secondary metabolites to evaluate their biofumigation effects against P. capsici, and found that citral, carvacrol, and trans-2-decenal exhibited strong antimicrobial effects. Intriguingly, a low concentration of citral was effective in restricting P. capsici infection in Nicotiana benthamiana, but it was unable to inhibit the mycelial growth. A high concentration of citral affected the mycelial growth and morphology, zoospore germination, and cell membrane permeability of P. capsici. Further investigations showed that citral did not induce expression of tested plant immunity-related genes and reactive oxygen species (ROS) production, suggesting that a low concentration of citral could not trigger plant immunity. Moreover, RNA-Seq analysis showed that citral treatment regulated the expression of some P. capsici effector genes such as RxLR genes and P. cactorum-fragaria (PCF)/small cysteine-rich (SCR)74-like genes during the infection process, which was also verified by reverse transcription-quantitative PCR assay. Five candidate effector genes suppressed by citral significantly facilitated P. capsici infection in N. benthamiana or inhibited ROS triggered by flg22, suggesting that they were virulence factors of P. capsici. Together, our results revealed that plant-derived citral exhibited excellent inhibitory efficacy against P. capsici by suppressing vegetative growth and manipulating expression of effector genes, which provides a promising application of citral for controlling Phytophthora blight.


Asunto(s)
Phytophthora , Virulencia/genética , Especies Reactivas de Oxígeno/metabolismo , Plantas , Nicotiana/genética , Enfermedades de las Plantas
15.
Mol Plant Microbe Interact ; 36(5): 283-293, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37022145

RESUMEN

The oomycete Pythium myriotylum is a necrotrophic pathogen that infects many crop species worldwide, including ginger, soybean, tomato, and tobacco. Here, we identified a P. myriotylum small cysteine-rich protein, PmSCR1, that induces cell death in Nicotiana benthamiana by screening small, secreted proteins that were induced during infection of ginger and did not have a predicted function at the time of selection. Orthologs of PmSCR1 were found in other Pythium species, but these did not have cell death-inducing activity in N. benthamiana. PmSCR1 encodes a protein containing an auxiliary activity 17 family domain and triggers multiple immune responses in host plants. The elicitor function of PmSCR1 appears to be independent of enzymatic activity, because the heat inactivation of PmSCR1 protein did not affect PmSCR1-induced cell death or other defense responses. The elicitor function of PmSCR1 was also independent of BAK1 and SOBIR1. Furthermore, a small region of the protein, PmSCR186-211, is sufficient for inducing cell death. A pretreatment using the full-length PmSCR1 protein promoted the resistance of soybean and N. benthamiana to Phytophthora sojae and Phytophthora capsici infection, respectively. These results reveal that PmSCR1 is a novel elicitor from P. myriotylum, which exhibits plant immunity-inducing activity in multiple host plants. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Phytophthora , Pythium , Cisteína , Proteínas/metabolismo , Phytophthora/metabolismo , Inmunidad de la Planta , Nicotiana , Enfermedades de las Plantas
16.
J Integr Plant Biol ; 65(5): 1312-1327, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36633200

RESUMEN

Plant cells recognize microbial patterns with the plasma-membrane-localized pattern-recognition receptors consisting mainly of receptor kinases (RKs) and receptor-like proteins (RLPs). RKs, such as bacterial flagellin receptor FLS2, and their downstream signaling components have been studied extensively. However, newly discovered regulatory components of RLP-mediated immune signaling, such as the nlp20 receptor RLP23, await identification. Unlike RKs, RLPs lack a cytoplasmic kinase domain, instead recruiting the receptor-like kinases (RLKs) BAK1 and SOBIR1. SOBIR1 specifically works as an adapter for RLP-mediated immunity. To identify new regulators of RLP-mediated signaling, we looked for SOBIR1-binding proteins (SBPs) in Arabidopsis thaliana using protein immunoprecipitation and mass spectrometry, identifying two G-type lectin RLKs, SBP1 and SBP2, that physically interacted with SOBIR1. SBP1 and SBP2 showed high sequence similarity, were tandemly repeated on chromosome 4, and also interacted with both RLP23 and BAK1. sbp1 sbp2 double mutants obtained via CRISPR-Cas9 gene editing showed severely impaired nlp20-induced reactive oxygen species burst, mitogen-activated protein kinase (MAPK) activation, and defense gene expression, but normal flg22-induced immune responses. We showed that SBP1 regulated nlp20-induced immunity in a kinase activity-independent manner. Furthermore, the nlp20-induced the RLP23-BAK1 interaction, although not the flg22-induced FLS2-BAK1 interaction, was significantly reduced in sbp1 sbp2. This study identified SBPs as new regulatory components in RLP23 receptor complex that may specifically modulate RLP23-mediated immunity by positively regulating the interaction between the RLP23 receptor and the BAK1 co-receptor.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Inmunidad/genética , Inmunidad/inmunología , Lectinas/genética , Lectinas/inmunología , Lectinas/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Mitogénicos/metabolismo
17.
Plant Dis ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627797

RESUMEN

Yam (Dioscorea spp.) is an important source of food and energy in the world, and is also widely cultivated in China (Frossard et al. 2017). Yam is rich in fiber and antioxidants, and can significantly reduce blood sugar. Therefore, it is also known as a medicinal crop with high medicinal value in China (Cao et al. 2021). In October 2021, leaf spots were observed on the seven month old yam leaves of a commercial yam field in Nanjing city, Jiangsu Province, China. The field had a disease severity of approximately 25% and an incidence of 30%, and the infected plants displayed poor development. Symptoms in the leaves included irregular yellow to brown spots of different sizes, and lesion spots later turned dark brown, resulting in necrotic leaves (Fig. S1A). Four symptomatic leaves collected from 3 yam plants were rinsed with water, cut into 2-mm small square leaf pieces and were surface-sterilized in 70% ethanol and 2% sodium hypochlorite for 2 min, then rinsed three times with sterile distilled water. The sterilized leaf tissues were plated onto potato dextrose agar (PDA) containing ampicillin and rifampicin, and then were incubated at 25°C in the dark for 3-5 days. Three isolates (NAU-1, NAU-2, and NAU-3) were obtained from a total of four leaf samples by purifying of single-spore culture. Nine agar plugs (6×6 mm2) were transferred into 8 mL of PDA in a 70 mm plate at 25°C to observe colony morphology. The three isolates had identical morphological features. For the representative isolate NAU-1, colonies were white and fluffy in appearance during initial 4 days, and became gray-brown with the onset of sporulation after 5 days (Fig. S1B). Microscopic observation showed that mycelia were smooth, branched, and septate (Fig. S1C) and conidia were single-celled, black, spherical to subspherical, measuring 10.7 ± 0.9 µm × 12.5 ± 2.6 µm in diameter (n=50) (Fig. S1D). Morphological features suggested that these isolates possessed the same characteristics. For accurate identification, the genomic DNA was extracted from each isolate using Fungi Genomic DNA Extraction Kit (D2300; Solarbio, Beijing, China). The internal transcribed spacer (ITS) sequence, ß-tubulin (TUB2) gene, and translation elongation factor 1-alpha (Tef-1α) gene, were amplified using the primer pairs ITS1/ITS4 (White et al. 1990), Bt2a/Bt2b (Glass and Donaldson 1995), and EF1/EF2 (O'Donnell et al. 1998), respectively. These sequences were deposited in GenBank (ITS: ON394529, OP735574, and OP735562; TUB2: ON427830, OP756526, and OP756528; Tef-1α: ON427831, OP756525, and OP756527 for NAU-1, NAU-2, and NAU-3, respectively). The ITS, TUB2, and Tef-1α sequences of three isolates showed high similarity (>98.5%) to the corresponding sequences (MT732051.1, KY019554.1, and KY019413.1) of Nigrospora oryzae in GenBank. Further phylogenetic analysis showed that the three isolates clustered with N. oryzae (Fig. S2). Therefore, based on morphological and molecular evidence, the three isolates were identified as N. oryzae. N. oryzae has been reported to cause leaf spot on cotton and ginger in China (Zhang et al. 2012; Liu et al. 2022). Furthermore, the pathogenicity of isolated N. oryzae was tested on healthy, potted 1-year-old yam plants. The 6-mm agar plugs-containing mycelia from 4-day-old PDA cultures and agar blocks (control) were used to inoculate sixteen wounded yam leaves, followed by maintaining in a growth chamber under 16 h day at 25°C and 8 h night at 20°C. After six days post inoculation, all the inoculated yam leaves exhibited similar symptoms observed in the field, whereas the uninoculated leaves remained symptomless (Fig. S1E). The experiments were repeated three times with similar results. N. oryzae was reisolated from the infected plants and confirmed to be the same pathogen by using morphological and molecular methods. To our knowledge, this is the first report of N. oryzae causing leaf spot disease of yams in China. Identification of this pathogen would assist in developing strategies to efficiently control the spread of the disease on Chinese yams.

18.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655761

RESUMEN

SUMMARY: Fungi form a large and heterogeneous group of eukaryotic organisms with diverse ecological niches. The high importance of fungi contrasts with our limited understanding of fungal lifestyle and adaptability to environment. Over the last decade, the high-throughput sequencing technology produced tremendous RNA-sequencing (RNA-seq) data. However, there is no comprehensive database for mycologists to conveniently explore fungal gene expression and alternative splicing. Here, we have developed FungiExp, an online database including 35 821 curated RNA-seq samples derived from 220 fungal species, together with gene expression and alternative splicing profiles. It allows users to query and visualize gene expression and alternative splicing in the collected RNA-seq samples. Furthermore, FungiExp contains several online analysis tools, such as differential/specific, co-expression network and cross-species gene expression conservation analysis. Through these tools, users can obtain new insights by re-analyzing public RNA-seq data or upload personal data to co-analyze with public RNA-seq data. AVAILABILITY AND IMPLEMENTATION: The FungiExp is freely available at https://bioinfo.njau.edu.cn/fungiExp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Empalme Alternativo , ARN , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Expresión Génica , Programas Informáticos
19.
J Integr Plant Biol ; 65(6): 1553-1565, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36661038

RESUMEN

Cell-surface-localized leucine-rich-repeat receptor-like kinases (LRR-RLKs) are crucial for plant immunity. Most LRR-RLKs that act as receptors directly recognize ligands via a large extracellular domain (ECD), whereas LRR-RLK that serve as regulators are relatively small and contain fewer LRRs. Here, we identified LRR-RLK regulators using high-throughput tobacco rattle virus (TRV)-based gene silencing in the model plant Nicotiana benthamiana. We used the cell-death phenotype caused by INF1, an oomycete elicitin that induces pattern-triggered immunity, as an indicator. By screening 33 small LRR-RLKs (≤6 LRRs) of unknown function, we identified ELICITIN INSENSITIVE RLK 1 (NbEIR1) as a positive regulator of INF1-induced immunity and oomycete resistance. Nicotiana benthamiana mutants of eir1 generated by CRISPR/Cas9-editing showed significantly compromised immune responses to INF1 and were more vulnerable to the oomycete pathogen Phytophthora capsici. NbEIR1 associates with BRI1-ASSOCIATED RECEPTOR KINASE 1 (NbBAK1) and a downstream component, BRASSINOSTEROID-SIGNALING KINASE 1 (NbBSK1). NbBSK1 also contributes to INF1-induced defense and P. capsici resistance. Upon INF1 treatment, NbEIR1 was released from NbBAK1 and NbBSK1 in vivo. Moreover, the silencing of NbBSK1 compromised the association of NbEIR1 with NbBAK1. We also showed that NbEIR1 regulates flg22-induced immunity and associates with its receptor, FLAGELLIN SENSING 2 (NbFLS2). Collectively, our results suggest that NbEIR1 is a novel regulatory element for BAK1-dependent immunity. NbBSK1-NbEIR1 association is required for maintaining the NbEIR1/NbBAK1 complex in the resting state.


Asunto(s)
Nicotiana , Phytophthora , Nicotiana/genética , Plantas , Transducción de Señal , Inmunidad de la Planta/genética
20.
Plant Commun ; 4(2): 100460, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36217305

RESUMEN

Phytophthora pathogens lead to numerous economically damaging plant diseases worldwide, including potato late blight caused by P. infestans and soybean root rot caused by P. sojae. Our previous work showed that Phytophthora pathogens may generate abundant phosphatidylinositol 3-phosphate (PI3P) to promote infection via direct association with RxLR effectors. Here, we designed a disease control strategy for metabolizing pathogen-derived PI3P by expressing secreted Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinase 1 (AtPIP5K1), which can phosphorylate PI3P to PI(3,4)P2. We fused AtPIP5K1 with the soybean PR1a signal peptide (SP-PIP5K1) to enable its secretion into the plant apoplast. Transgenic soybean and potato plants expressing SP-PIP5K1 showed substantially enhanced resistance to various P. sojae and P. infestans isolates, respectively. SP-PIP5K1 significantly reduced PI3P accumulation during P. sojae and soybean interaction. Knockout or inhibition of PI3 kinases (PI3Ks) in P. sojae compromised the resistance mediated by SP-PIP5K1, indicating that SP-PIP5K1 action requires a supply of pathogen-derived PI3P. Furthermore, we revealed that SP-PIP5K1 can interfere with the action of P. sojae mediated by the RxLR effector Avr1k. This novel disease control strategy has the potential to confer durable broad-spectrum Phytophthora resistance in plants through a clear mechanism in which catabolism of PI3P interferes with RxLR effector actions.


Asunto(s)
Phytophthora , Phytophthora/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...