Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135014, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38941839

RESUMEN

Pt(II) polypyridine complex-based probe exhibits promising performance in anion detection by the change of the absorption and emission properties based on supramolecular self-assembly. However, whether one can develop a modulation strategy of the counter anion to boost the detection sensitivity and anti-interference capability of the Pt(II) complex-based probe remains a big challenge. Here, an effective modulation strategy was proposed by precisely regulating the interaction energy through adjusting the type of the counter anions, and a series of probes have been synthesized by counter anion (X = Cl-, ClO4-, PF6-) exchange in [Pt(tpy)Cl]·X (tpy=2,2':6',2''-terpyridine), and thus the colorimetric-luminescence dual-mode detection toward nitrate was achieved. The optimal [Pt(tpy)Cl]·Cl probe shows superior nitrate detection performance including a limit of detection (LOD) (8.68 nM), rapid response (<0.5 s), an excellent selectivity and anti-interference capability even facing 14 common anions. Moreover, a polyvinyl alcohol (PVA) sponge-based sensing chip loaded with the probe enables the ultra-sensitive detection of nitrate particles with an ultralow detection limit of 7.6 pg, and it was further integrated into a detection pen for the accurate recognition of nitrate particles in real scenarios. The proposed counter-anion modulation strategy is expected to start a new frontier for the exploration of novel Pt(II) complex-based probes.

2.
Anal Chem ; 96(22): 9026-9033, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771095

RESUMEN

Precise detection of a trace substance that intrinsically possesses weak chemical activity and less-distinctive spatial structure is of great significance, but full of challenges, as it could not be effectively recognized via either an active covalent reaction process or multiple noncovalent interactions toward its simple structure. Here, the electronic-effect-driven recognition strategy was proposed to visually sense an illicit drug, γ-hydroxybutyric acid (GHB), which was treated as an analyte model due to its inherent simple structure. In particular, a sensing system composed of two probes substituted by the nitro (-NO2) and the hydrogen (-H), was constructed with the characteristic yellow coloring and blue fluorescence, as well as high sensitivity (0.586 ng/mL), fast response (0.2 s), and specific recognition, even in the presence of 22 interferents. In addition, a portable eyeshadow box-like sensing chip was fabricated and proven to be reliable and feasible in sensing GHB disguised in liquors for self-protection in a covert manner. Hence, this work developed an electronic-effect-driven modulation strategy of the recognition interaction between the probe and the analyte and, thus, would open up a new thought for detecting the analyte with weak activity and a simple structure, as well as propel the relevant application in real scenarios.

3.
J Phys Chem A ; 128(18): 3571-3578, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38656182

RESUMEN

It is of great importance to understand the intrinsic relationship between phototautomerization and photoelectric properties for the exploration of novel organic materials. Here, in order to chemically control the protonation process, the aminated isoxazole derivative (2,2'-(isoxazolo[5,4-d]isoxazole-3,6-diyl)dibenzenaminium, DP-DA-DPIxz) with -N═ as the proton acceptor was designed to achieve the twisted intramolecular charge transfer (TICT) state which was triggered by an excited-state intramolecular proton transfer (ESIPT) process. This kind of protonation enhanced the intramolecular hydrogen bonding, conjugative effect, and steric hindrance effects, ensuring a barrierless spontaneous TICT process. Through the intramolecular proton transfer, the configuration torsion and conjugation dissociation of the DP-DA-DPIxz molecule was favored, which led to efficient charge separation and remarkable variations in light-emitting properties. We hope the present investigation will provide a new approach to design novel optoelectronic organic materials and shine light on the understanding of the charge transfer and separation process in molecular science.

4.
Small ; : e2401024, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597755

RESUMEN

Exposing different facets on metal-organic frameworks (MOFs) is highly desirable to enhance the performance for various applications, however, exploiting a concise and effective approach to achieve facet-controlled synthesis of MOFs remains challenging. Here, by modulating the ratio of metal precursors to ligands, the facet-engineered iron-based MOFs (Fe-MOFs) exhibits enhanced catalytic activity for Fenton reaction are explored, and the mechanism of facet-dependent performance is revealed in detail. Fully exposed (101) and (100) facets on spindle-shaped Fe-MOFs enable rapid oxidation of colorless o-phenylenediamine (OPD) to colored products, thereby establishing a dual-mode platform for the detection of hydrogen peroxide (H2O2) and triacetone triperoxide (TATP). Thus, a detection limit as low as 2.06 nm is achieved, and robust selectivity against a wide range of common substances (>16 types) is obtained, which is further improved by incorporating a deep learning architecture with an SE-VGG16 network model, enabling precise differentiation of oxidizing agents from captured images. The present strategy is expected will shine light on both the rational synthesis of nanomaterials with modulated morphologies and the exploitation of high-performance trace chemical sensors.

5.
JACS Au ; 4(2): 545-556, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425925

RESUMEN

The exploration of emerging functionalized quantum dots (QDs) through modulating the effective interaction between the sensing element and target analyte is of great significance for high-performance trace sensing. Here, the chromone-based ligand grafted QDs (QDs-Chromone) were initiated to realize the electronic energy transfer (EET) driven specifically by ethylenediamine (EDA) in the absence of spectral overlap. The fluorescent and colorimetric dual-mode responses (from red to blue and from colorless to yellow, respectively) resulting from the expanded conjugated ligands reinforced the analytical selectivity, endowing an ultrasensitive and specific response to submicromolar-liquid of EDA. In addition, a QDs-Chromone-based sensing chip was constructed to achieve the ultrasensitive recognition of EDA vapor with a naked-eye observed response at a concentration as low as 10 ppm, as well as a robust anti-interfering ability in complicated scenarios monitoring. We expect the proposed EET strategy in shaping functionalized QDs for high-performance sensing will shine light on both rational probe design methodology and deep sensing mechanism exploration.

6.
Anal Methods ; 16(15): 2301-2310, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38529837

RESUMEN

Highly efficient detection of environmental residual potentially toxic species is of concern worldwide as their presence in an excessive amount would greatly endanger the health of human beings as well as environmental sustainability. The solvation effect is a critical factor to be considered for understanding chemical reaction progress as well as the photophysical behaviors of substances and thus is promising for visualized detection of metal ions. Herein, by applying 5-amino-1,10-phenanthroline (APT) as the optical probe, a sensing strategy was proposed based on the solvation effect modulated complexation of APT towards different metal ions to achieve the visualized discrimination of four critical ions (Cu(II), Zn(II), Cd(II), and Al(III)). How the crucial intrinsic properties of the solvent (e.g., polarity, solvent free energy, and electrostatic potential) influenced the complexation and the product emission was clarified, and the detection performances were systematically evaluated with detection limits as low as the nM level and good recognition selectivity. Furthermore, a portable sensing chip was developed with potential for highly efficient analysis in complicated scenes; thus, this strategy offers a new insight into determining multiple metal ions or other critical substances upon solvation manipulation.

7.
Adv Sci (Weinh) ; 11(18): e2400361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447144

RESUMEN

Precise and timely recognition of hazardous chemical substances is of great significance for safeguarding human health, ecological environment, public security, etc., especially crucial for adopting appropriate disposition measures. Up to now, there remains a practical challenge to sensitively detect and differentiate organic amines with similar chemical structures with intuitive analysis outcomes. Here, a unique optical probe with two electrophilic recognition sites for rapid and ultra-sensitive ratiometric fluorescence detection of ethylenediamine (EDA) is presented, while producing distinct fluorescence signals to its structural analog. The probe exhibits ppb/nmol level sensitivity to liquidous and gaseous EDA, specific recognition toward EDA without disturbance to up to 28 potential interferents, as well as rapid fluorescence response within 0.2 s. By further combining the portable sensing chip with the convolutional algorithm endowed with image processing, this work cracked the problem of precisely discriminating the target and non-targets at extremely low concentrations.

8.
Angew Chem Int Ed Engl ; 63(15): e202400453, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38323751

RESUMEN

Aggregation-induced emission (AIE) shows promising performance in chemical sensing relying on the change of the emission behavior of the probe molecule monomers to the aggregated product. However, whether the response contrast could be further boosted by utilizing the emission property of the aggregated probe and the aggregated product remains a big challenge. Here, an exciting AIE probe regulation strategy was proposed by coherently modulating the aggregation behavior and the intramolecular charge transfer (ICT) property of the probes and thus an aggregated-to-aggregated colorimetric-fluorescent dual-mode detection was achieved. The blue emissive film obtained with the optimal AIE probe has been proven to be effective to recognize the vapor of nerve agent analog DCP in air by emitting a sharp green fluorescence. In addition, a porous polymer-based wet sensing chip loaded with the probe enables the immediate response to DCP vapor with a limit of detection (LOD) of 1.7 ppb, and it was further integrated into a wearable watch device for long-term monitoring of DCP vapor up to two weeks. We expect the present probe design strategy would greatly deepen the AIE-based science and provide new insights for long-term monitoring sensors toward trace hazardous substances.


Asunto(s)
Colorantes Fluorescentes , Agentes Nerviosos , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Colorimetría
9.
Adv Sci (Weinh) ; 11(13): e2309182, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240462

RESUMEN

The design and development of ultra-accurate probe is of great significance to chemical sensing in complex practical scenarios. Here, a self-accelerating naphthalimide-based probe with fast response and high sensitivity toward hydrogen peroxide (H2O2) is designed. By coupling with the specially selected upconversion nanoparticles (UCNPs), an ultra-accurate colorimetric-fluorescent-upconversion luminescence (UCL) tri-mode platform is constructed. Owing to the promoted reaction process, this platform demonstrates rapid response (< 1 s), an ultra-low detection limit (4.34 nM), and superb anti-interferent ability even in presence of > 21 types of oxidants, explosives, metallic salts, daily compounds, colorful or fluorescent substances. In addition, the effectiveness of this design is further verified by a sponge-based sensing chip loaded with the UCNPs/probe in recognizing trace H2O2 vapor from interferents with the three characteristic colors existing simultaneously. The proposed design of probe and tri-mode visualization detection platform is expected to open up a brand-new methodology for ultra-accurate sensing.

10.
Anal Chem ; 95(23): 9014-9024, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37260031

RESUMEN

The precise regulation of the electron-withdrawing/electron-donating strength in a probe is of great significance for the design of reaction-based fluorescent probes with specific functionalities. Here, a family of excited-state intramolecular proton transfer (ESIPT)-based probes with fluorescence turn-on sensing properties toward KMnO4 was designed by precisely modulating the electron-withdrawing strength of the substituents located at the para-position of the recognition group. It is found that -F, -CHO, and -H as the electron-withdrawing groups bound at the probe can specifically recognize KMnO4, which ensures a blue emission displayed by the reaction products. Especially with -CHO as the electron-withdrawing group, the reaction product shows the most stable fluorescence. The probe 2-(benzo[d]oxazol-2-yl)-4-formylphenyl acrylate (BOPA-CHO) demonstrated a more superior sensing performance toward KMnO4, including a low limit of detection (LOD, 0.96 nM), a rapid response (<3 s), and a rather good selectivity even in the presence of 21 interferents. Moreover, the practicality of the probe was further verified by a test pen comprising a BOPA-CHO-embedded sponge, which is capable of detecting KMnO4 solid with a naked-eye LOD of 11.62 ng. The present probe design and modulation strategy would open up a new path for the design of high-performance fluorescent probes.

11.
Adv Mater ; 35(24): e2300526, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929680

RESUMEN

Amorphous metal-based nanostructures have attracted great attention recently due to their facilitative electron transfer and abundant reactive sites, whereas it remains enigmatic as to whether amorphous copper-based nanoparticles (CuNPs) can be achieved. Here, for synthesizing amorphous CuNPs, glutathione is adopted as a ligand to inhibit the nucleation and crystallization process via its electrostatic repulsion. By subtly tailoring the solvent polarity, not only can amorphous glutathione-functionalized CuNPs (GSH-CuNPs) with phosphorescent performance be achieved after transferring the non-conjugation of GSH ligand to through-space conjugation, namely clusterization-triggered emission, but also the phosphorescence-off of GSH-CuNPs toward 2,4,6-trinitrotoluene (TNT) can be realized by the photoinduced electron-transfer process through the hydrogen bond channel, which is established between carboxyl and amino groups of GSH-CuNPs with the nitryl group of TNT. Benefitting from the intrinsic superiorities of the amorphous CuNPs, desired phosphorescence and detection performances of GSH-CuNPs toward airborne TNT microparticulates are undoubtedly realized, including high quantum yield (13.22%), excellent specificity in 33 potential interferents, instantaneous response, and ultralow detection limit (1.56 pg). The present GSH-CuNPs are expected to stretch amorphous metal-based nanostructures and deepen the insights into amorphous materials for optical detection.

12.
J Phys Chem A ; 127(4): 902-912, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36669096

RESUMEN

The exploration of the intrinsic relationship between the phototautomerization and photoelectric properties is of great significance for the application of the emerging novel organic materials, such as the (bi)heterocyclic thiazolo[5,4-d]thiazole derivatives (TzTz). Here, by introducing the chemical-controlling protonation, a barrierless spontaneous rotation movement of the designed TzTz derivative (2,5-diyl-amino-thiazolo[5,4-d]thiazole, DA-TzTz) was ensured through the facilitation of the excited-state intramolecular proton transfer (ESIPT) triggered twisted intramolecular charge transfer (TICT) process by the enhancement of the intramolecular hydrogen bonds, steric hindrance effect, and conjugative effect. It is further verified that the hetero S atoms could mostly effect the proton accepting ability of -N═ through comparing with the influences to the intramolecular H-bond between the protonated/nonprotonated amino groups and the -N═ atoms brought by the replacement of them with N or O atoms. As a result, the dissociation and rearrangement of the π conjugation in DA-TzTz accompanying with the variation of the optoelectronic characteristics was benefited from the establishment of the preferential charge-transfer and separation. We expect this tentative study could establish a new concept of designing an efficient charge-transfer and separation method, paving the way for the development of the TzTz derivatives and other optoelectronic organic materials.

13.
Org Biomol Chem ; 21(2): 315-322, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36524697

RESUMEN

A deep understanding of the fluorescence response mechanisms is the foundation for design-oriented strategies for D-π-A probes for trace hazardous chemicals. Here, from the perspective of electronegativity regulation of the π-bridge recognition site, an electron-donation modulation strategy involving various comprehensive evaluations of the optical and chemical properties is proposed through a series of theoretical analyses. Due to the preferential combined interaction between the π-bridge recognition site and MnO4-, high electrophilic reactivity and feasible chemical reaction energy barrier, a high-performance filter paper chip and hydrogel chip for the detection of aqueous and air-suspended environmental KMnO4 was achieved. We expect the present modulation strategy will facilitate efficient fluorescent probe design and provide a universal methodology for the exploration of functional D-π-A molecules.


Asunto(s)
Electrones , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Teoría Funcional de la Densidad , Fluorescencia
14.
J Phys Chem Lett ; 13(46): 10871-10881, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36394325

RESUMEN

The exploration of organic fluorescent sensing materials and mechanisms is of great significance, especially for the deep understanding of twisted intramolecular charge transfer (TICT). Here, the electron-donating ability of a chemically protonated amino group and the corresponding excitation primarily ensure the occurrence of excited-state intramolecular proton transfer. Due to the hybridization of the amino group from sp3 to sp2, the steric hindrance effect and conjugative effect together boost the rotation efficiency of the TICT process and the complete elimination of the background fluorescent signal. Furthermore, a sharp turn-on fluorescent detection of trace nitrite particulate with a diameter of 0.44 µm was realized. In addition, this protonation-induced change in the amino group configuration was verified through around nine categories of compounds. We expect this modulation of the photochemical activity path of the TICT process would greatly facilitate the exploration of novel fluorescent sensing mechanisms.


Asunto(s)
Colorantes , Protones , Electrones
15.
Anal Methods ; 14(44): 4485-4494, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36317750

RESUMEN

The detection and discrimination of 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP) from analogues are of great importance to global security and are full of challenges in the field of trace sensing. Here, benefitting from the strong electrophilicity of TNT, a sensing strategy is established by synthesizing polyethyleneimine capped copper nanoclusters (PEI-Cu NCs) with abundant -NH2 groups. By carefully controlling the size and structure of PEI-Cu NCs, Förster resonance energy transfer (FRET) from PEI-Cu NCs to the Meisenheimer complex occurs resulting from their spectral overlap when detecting TNT, while, due to the energy level match of TNP with PEI-Cu NCs, as well as the strong affinity between its -OH and -NH2 in PEI-Cu NCs, photo-induced electron transfer (PET) is feasibly expected. As a result, TNT and TNP could be detected from 26 types of analogues and cations with a limit of detection (LOD) of 26.57 and 12.82 nM, respectively. Besides, owing to the brown color of the Meisenheimer complex, the discrimination of TNT and TNP could be additionally realized by colorimetric detection. We expect that the proposed methodology would not only shine light on the detection and discrimination of TNT and TNP that mitigate against public security concerns, but also pave a way for the deep understanding of FRET and PET related fluorescence quenching mechanisms from the aspect of controllable sensing material design and synthesis.


Asunto(s)
Trinitrotolueno , Cobre/química , Polietileneimina/química , Picratos
16.
Anal Chem ; 94(33): 11679-11687, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35948453

RESUMEN

Inhibition of twisting intramolecular charge transfer (TICT) is one of the most attractive methods for fluorescence-on analysis, whereas it remains enigmatic whether the fluorescence in a TICT-based probe could be thoroughly lightened. Here, for maximizing the fluorescence-on signal of the TICT-based probe, we develop a model by employing chemical reaction to directly cleave the linkage between the rotational electron donor and acceptor with a predisposed fluorescent signal close to zero. To validate this assumption, a nonfluorescent probe with barrierless rotation is successfully achieved by grafting acryloyl with -C═C- recognition sites onto coumarin, and 7-hydroxycoumarin with bright blue fluorescence could be released within 3 s upon probing KMnO4 with an amount as low as 0.95 nM and 6.6 pg. We believe that the present strategy could not only deepen the insights of photochemistry but also facilitate the development of a theranostic drug delivery system, energy conversion, pollution control, and health risk reduction.


Asunto(s)
Colorantes , Fluorescencia , Fotoquímica , Rotación
17.
Adv Sci (Weinh) ; 9(25): e2201497, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748174

RESUMEN

The development of high-performance individual marking taggants is of great significance. However, the interaction between taggant and skin is not fully understood, and a standard for marking taggants has yet to be realized. To achieve a highly retentive, anti-interference, and covert individual marking fluorescent taggant, Mn2+ -doped NaYF4 :Yb/Er upconversion nanoparticles (UCNPs), are surface-functionalized with polyethyleneimine (PEI) to remarkably enhance the interaction between the amino groups and skin, and thus to facilitate the surface adhesion and chemical penetration of the taggant. Electrostatic interaction between PEI600 -UCNPs and skin as well as remarkable penetration inside the epidermis is responsible for excellent taggant retention capability, even while faced with robust washing, vigorous wiping, and rubbing for more than 100 cycles. Good anti-interference capability and reliable marking performance in real cases are ensured by an intrinsic upconversion characteristic with a distinct red luminescent emission under 980 nm excitation. The present methodology is expected to shed light on the design of high-performance individual marking taggants from the perspective of the underlying interaction between taggant and skin, and to help advance the use of fluorescent taggants for practical application, such as special character tracking.


Asunto(s)
Nanopartículas , Luminiscencia , Polietileneimina
18.
J Hazard Mater ; 436: 129263, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739781

RESUMEN

Leakage and contamination of hazardous chemical substances have been widely recognized as the critical issue in ensuring human health, maintaining environmental sustainability, and safeguarding public security. Urotropin as a crucial raw material in industrial holds a potential threat to aquatic/atmospheric environment with refractory degradation problem, hence, there remains a severe challenge to effectively and on-site monitor urotropin. Here, a general design with all-in-one strategy was presented, in which a highly integrated "pocket sensing chip" combining a sampling unit and a detecting unit together endows a rapid and ultrasensitive colorimetric detection without dead-zone towards urotropin. By loading fast blue B as sensing reagent in the detecting unit, a moderate and sensitive detection towards urotropin via electrostatic interaction was achieved with detection limits of 9 µM for liquid and 17.19 ng for particulates. Furthermore, an expandable sensing chip for the purpose of simultaneously screening on multi-target exhibited remarkable applicability for examining suspicious objects with all sorts of surface in real scenes, being unacted on environmental complexity. We expect this design would provide a universal strategy and the high referential value to propel the development of handy and portable sensing device to efficiently screen the environmental relevant critical substance on-site.


Asunto(s)
Colorimetría , Metenamina , Sustancias Peligrosas , Humanos , Electricidad Estática
19.
Anal Chem ; 94(25): 9184-9192, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35713422

RESUMEN

Although a set of functional molecules with the D-π-A structure has been explored as optical probes for the detection of target analytes, it remains a great challenge to elaborately design a single probe for distinguishing different analytes by their intrinsic oxidation or reduction capabilities and thus to generate distinct optical responses. Here, a unique TCF-based probe (DMA-CN) containing two unsaturated double bonds in the π-conjugation bridge and TCF with different reaction activities that could be cut off by KMnO4 and NaClO in varying degrees was developed, causing remarkably distinguishable responses for both fluorescence and colorimetric channels to discriminate KMnO4 and NaClO from each other. The fluorescence and colorimetric limits of detection (LODs) of the proposed DMA-CN toward KMnO4 were calculated as 60 and 91 nM, respectively, while those for NaClO were 13.3 and 214 nM, and all the optical signal change can be observed within 1 s with good specificity. Based on the proposed probe design strategy, a well-fabricated test strip was proven to be promising for the rapid, in-field detection and risk management. We expect that the present probe design methodology would provide a powerful strategy for efficient probe exploration, especially for discriminating the substances with similar oxidizing properties.


Asunto(s)
Colorimetría , Oxidantes , Colorimetría/métodos , Límite de Detección , Oxidación-Reducción
20.
Angew Chem Int Ed Engl ; 61(29): e202203358, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363416

RESUMEN

Manipulation of a multi-physical quantity to steer a molecular photophysical property is of great significance in improving sensing performance. Here, an investigation on how a physical quantity rooted in the molecular structure induces an optical behavior change to facilitate ultrasensitive detection of ethylenediamine (EDA) is performed by varying a set of thiols. The model molecule consisting of a thiol with dual-carboxyl exhibits the strongest fluorescence, which is ascribed to the electron-donating ability and prompted larger orbital overlap and oscillator strength. The elevated fluorescence positively corelated to the increased EDA, endowing an ultrasensitive response to the nanomolar-liquid/ppm-vapor. A gas detector with superior performance fulfills a contactless and real-time management of EDA. We envisage this electron-tuning strategy-enabled fluorescence enhancement can offer in-depth insight in advancing molecule-customized design, further paving the way to widening applications.


Asunto(s)
Colorantes , Etilenodiaminas , Electrónica , Etilenodiaminas/química , Espectrometría de Fluorescencia , Compuestos de Sulfhidrilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...