Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 282: 35-45, 2018 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-29673642

RESUMEN

Triple negative breast cancer is an aggressive disease that accounts for at least 15% of breast cancer diagnoses, and a disproportionately high percentage of breast cancer related morbidity. Intensive research efforts are focused on the development of more efficacious treatments for this disease, for which therapeutic options remain limited. The high incidence of mutations in key DNA repair pathways in triple negative breast cancer results in increased sensitivity to DNA damaging agents, such as platinum-based chemotherapies. Hyperthermia has been successfully used in breast cancer treatment to sensitize tumors to radiation therapy and chemotherapy. It has also been used as a mechanism to trigger drug release from thermosensitive liposomes. In this study, mild hyperthermia is used to trigger release of cisplatin from thermosensitive liposomes in the vasculature of human triple negative breast cancer tumors implanted orthotopically in mice. This heat-triggered liposomal formulation of cisplatin resulted in significantly delayed tumor growth and improved overall survival compared to treatment with either non-thermosensitive liposomes containing cisplatin or free cisplatin, as was observed in two independent tumor models (i.e. MDA-MB-231 and MDA-MB-436). The in vitro sensitivity of the cell lines to cisplatin and hyperthermia alone and in combination was characterized extensively using enzymatic assays, clonogenic assays, and spheroid growth assays. Evaluation of correlations between the in vitro and in vivo results served to identify the in vitro approach that is most predictive of the effects of hyperthermia in vivo. Relative expression of several heat shock proteins and the DNA damage repair protein BRCA1 were assayed at baseline and in response to hyperthermia both in vitro and in vivo. Interestingly, delivery of cisplatin in thermosensitive liposomes in combination with hyperthermia resulted in the most significant tumor growth delay, relative to free cisplatin, in the less cisplatin-sensitive cell line (i.e. MDA-MB-231). This work demonstrates that thermosensitive cisplatin liposomes used in combination with hyperthermia offer a novel method for effective treatment of triple negative breast cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Neoplasias de la Mama Triple Negativas/irrigación sanguínea , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Mama/irrigación sanguínea , Mama/efectos de los fármacos , Mama/patología , Línea Celular Tumoral , Cisplatino/uso terapéutico , Femenino , Humanos , Hipertermia Inducida/métodos , Liposomas/química , Ratones SCID , Neoplasias de la Mama Triple Negativas/patología
2.
J Control Release ; 262: 182-191, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28760449

RESUMEN

Significant heterogeneity in the tumor microenvironment of human cervical cancer patients is known to challenge treatment outcomes in this population. The current standard of care for cervical cancer patients is radiation therapy and concurrent cisplatin (CDDP) chemotherapy. Yet this treatment strategy fails to control loco-regional disease in 10-30% of patients. In order to improve the loco-regional control rate, a thermosensitive liposome formulation of CDDP (HTLC) was developed to increase local concentrations of drug in response to mild hyperthermia (HT). The HTLC formulation in combination with local HT demonstrated a significant therapeutic advantage in comparison to free drug and Lipoplatin™ in ME-180 and SiHa xenograft models of human cervical cancer, as well as in four distinct cervical patient-derived xenograft models. Differential response to HTLC+HT treatment was observed between the ME-180 and SiHa tumor models. Tumor doubling time, in vitro cell sensitivity, and tumor drug accumulation were found to be non-predictive of treatment efficacy. Rather, tumor microenvironment parameters, in particular elevated levels of both tumor hypoxia and associated stromal content, were found to serve as the overriding factors that limit drug efficacy. The prognostic value of these markers may enable stratification of cervical cancer patients for implementation of personalized medicine in the clinical setting.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Microambiente Tumoral , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/química , Cisplatino/farmacocinética , Cisplatino/uso terapéutico , Femenino , Calor , Humanos , Liposomas , Ratones SCID , Carga Tumoral/efectos de los fármacos , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
3.
J Vis Exp ; (106): e53055, 2015 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-26709539

RESUMEN

Liposomes have been employed as drug delivery systems to target solid tumors through exploitation of the enhanced permeability and retention (EPR) effect resulting in significant reductions in systemic toxicity. Nonetheless, insufficient release of encapsulated drug from liposomes has limited their clinical efficacy. Temperature-sensitive liposomes have been engineered to provide site-specific release of drug in order to overcome the problem of limited tumor drug bioavailability. Our lab has designed and developed a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, to provide triggered release of CDDP at solid tumors. Heat-activated delivery in vivo was achieved in murine models using a custom-built laser-based heating apparatus that provides a conformal heating pattern at the tumor site as confirmed by MR thermometry (MRT). A fiber optic temperature monitoring device was used to measure the temperature in real-time during the entire heating period with online adjustment of heat delivery by alternating the laser power. Drug delivery was optimized under magnetic resonance (MR) image guidance by co-encapsulation of an MR contrast agent (i.e., gadoteridol) along with CDDP into the thermosensitive liposomes as a means to validate the heating protocol and to assess tumor accumulation. The heating protocol consisted of a preheating period of 5 min prior to administration of HTLC and 20 min heating post-injection. This heating protocol resulted in effective release of the encapsulated agents with the highest MR signal change observed in the heated tumor in comparison to the unheated tumor and muscle. This study demonstrated the successful application of the laser-based heating apparatus for preclinical thermosensitive liposome development and the importance of MR-guided validation of the heating protocol for optimization of drug delivery.


Asunto(s)
Cisplatino/administración & dosificación , Cisplatino/química , Sistemas de Liberación de Medicamentos/métodos , Rayos Láser , Liposomas/administración & dosificación , Liposomas/química , Imagen por Resonancia Magnética/métodos , Animales , Femenino , Gadolinio/administración & dosificación , Gadolinio/química , Calefacción , Compuestos Heterocíclicos/administración & dosificación , Compuestos Heterocíclicos/química , Calor , Ratones , Ratones SCID , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/química
4.
J Control Release ; 207: 101-11, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25862513

RESUMEN

Existing paradigms in nano-based drug delivery are currently being challenged. Assessment of bulk tumor accumulation has been routinely considered an indicative measure of nanomedicine potency. However, it is now recognized that the intratumoral distribution of nanomedicines also impacts their therapeutic effect. At this time, our understanding of the relationship between the bulk (i.e., macro-) tumor accumulation of nanocarriers and their intratumoral (i.e., micro-) distribution remains limited. Liposome-based drug formulations, in particular, suffer from diminished efficacy in vivo as a result of transport-limiting properties, combined with the heterogeneous nature of the tumor microenvironment. In this report, we perform a quantitative image-based assessment of macro- and microdistribution of liposomes. Multi-scalar assessment of liposome distribution was enabled by a stable formulation which co-encapsulates an iodinated contrast agent and a near-infrared fluorescence probe, for computed tomography (CT) and optical microscopy, respectively. Spatio-temporal quantification of tumor uptake in orthotopic xenografts was performed using CT at the bulk tissue level, and within defined sub-volumes of the tumor (i.e., rim, periphery and core). Tumor penetration and relative distribution of liposomes were assessed by fluorescence microscopy of whole tumor sections. Microdistribution analysis of whole tumor images exposed a heterogeneous distribution of both liposomes and tumor vasculature. Highest levels of liposome uptake were achieved and maintained in the well-vascularized tumor rim over the study period, corresponding to a positive correlation between liposome and microvascular density. Tumor penetration of liposomes was found to be time-dependent in all regions of the tumor however independent of location in the tumor. Importantly, a multi-scalar comparison of liposome distribution reveals that macro-accumulation in tissues (e.g., blood, whole tumor) may not reflect micro-accumulation levels present within specific regions of the tumor as a function of time.


Asunto(s)
Medios de Contraste/farmacocinética , Yohexol/farmacocinética , Lípidos/química , Microscopía Fluorescente , Imagen Óptica , Imagen de Perfusión/métodos , Tomografía Computarizada por Rayos X , Neoplasias del Cuello Uterino/diagnóstico por imagen , Animales , Medios de Contraste/administración & dosificación , Medios de Contraste/química , Femenino , Xenoinjertos , Humanos , Yohexol/administración & dosificación , Yohexol/química , Liposomas , Ratones SCID , Microcirculación , Trasplante de Neoplasias , Flujo Sanguíneo Regional , Distribución Tisular , Microambiente Tumoral , Neoplasias del Cuello Uterino/irrigación sanguínea , Neoplasias del Cuello Uterino/metabolismo
5.
J Control Release ; 178: 69-78, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24440663

RESUMEN

Cisplatin (CDDP) has been identified as the primary chemotherapeutic agent for the treatment of cervical cancer, but dose limiting toxicity is a key issue associated with its clinical application. A suite of liposome formulations of CDDP has been developed in efforts to reduce systemic toxicity, but their therapeutic advantage over the free drug has been modest due to insufficient drug release at the tumor site. This report describes the development of a novel heat-activated thermosensitive liposome formulation containing CDDP (HTLC) designed to release approximately 90% of the loaded drug in less than 5min under mild heating conditions (42°C). Physico-chemical characteristics of HTLC were assessed in terms of gel to liquid crystalline phase transition temperature (Tm), drug loading efficiency, particle size, and stability. The pharmacokinetic profile and biodistribution of HTLC in non-tumor-bearing mice were evaluated over a 24h period. A sophisticated spatio-temporal elucidation of HTLC release in tumor-bearing mice was achieved by way of real-time monitoring using a magnetic resonance (MR) imaging protocol, wherein a custom-built laser-based conformal heat source was applied at the tumor volume to trigger the release of HTLC co-encapsulated with the MR contrast agent gadoteridol (Gd-HP-DO3A). MR thermometry (MRT) demonstrated that a relatively uniform temperature distribution was achieved in the tumor volume using the external laser-based heating setup. In mice bearing subcutaneously-implanted ME-180 cervical tumors, the combination of HTLC and heat resulted in a 2-fold increase in tumor drug levels at 1h post-administration compared to HTLC without heating. Furthermore, the overall tumor accumulation levels for the HTLC groups (with and without heat) at 1h post-injection were significantly higher than the corresponding free CDDP group. This translated into a significant improvement in therapeutic efficacy evaluated as tumor growth delay (p<0.05) for the heated HTLC treatment group compared to the unheated HTLC, heated or unheated free CDDP, and saline groups. Overall, findings from this study demonstrate that a heat-activated, triggered release formulation of CDDP results in a significant enhancement in the therapeutic index of this drug.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Hipertermia Inducida , Neoplasias del Cuello Uterino/terapia , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Cisplatino/farmacocinética , Terapia Combinada , Femenino , Calor , Humanos , Rayos Láser , Liposomas , Ratones , Ratones SCID , Distribución Tisular , Carga Tumoral/efectos de los fármacos , Carga Tumoral/efectos de la radiación , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA