Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Med Entomol ; 61(3): 756-763, 2024 May 13.
Article En | MEDLINE | ID: mdl-38470211

Biting midges in the genus Culicoides Latreille (Diptera: Ceratopogonidae) are known to transmit many pathogens of veterinary and medical concern. Although much work has been done globally and in certain regions of North America, Culicoides spp. research in rural Appalachia is limited. To begin characterizing the distribution and community structure of Culicoides spp. in Appalachia, we surveyed 2 distinct sites in the Ridge and Valley ecoregion of northeastern Tennessee, USA, from April 2021-September 2021. Culicoides spp. were sampled using 2 methods: Centers for Disease Control ultraviolet LED light traps and potential larval habitat substrate collection (coupled with water chemistry values). Site 1 was dominated by natural features, and Site 2 was a beef cattle operation. During 96 trap nights, a total of 1,568 Culicoides were collected, representing 24 species. Site 1 yielded the highest diversity, with 24 species, while Site 2 yielded 12 species. Overall, the most abundant species in light traps were C. stellifer Coquillett (44%), C. bergi Cochrane (18%), C. haematopotus Malloch (12%), and C. debilipalpis Lutz (11%). From substrate sampling, 8 species were identified. Culicoides haematopotus was the most abundant and was collected during each sampling period. Water chemistry values taken at the time of substrate collection were not significantly related to which Culicoides spp. emerged from a given substrate. Our results indicate a diverse community of Culicoides spp. in our study area, however, further work is needed to identify Culicoides species composition across a variety of landscapes in Appalachia and inform research on vector presence and associated vector disease dynamics.


Ceratopogonidae , Animals , Ceratopogonidae/classification , Tennessee , Animal Distribution , Biodiversity
2.
Vet Parasitol ; 325: 110090, 2024 Jan.
Article En | MEDLINE | ID: mdl-38043480

Invasive wild pigs (Sus scrofa) are a reservoir for over 100 viral, bacterial, and parasitic pathogens that are transmissible to humans, livestock, domestic animals, and wildlife in North America. Numerous historical local surveys and results from a nation-wide survey (2006-2010) indicated that wild pigs in the United States act as reservoirs for Trichinella spp. and Toxoplasma gondii, two zoonotic pathogens of importance for human and animal health. Since that time, wild pig populations have expanded and increased in density in many areas. Population expansion of wild pigs creates opportunities for the introduction of pathogens to new areas of the country, increasing health risks. The goal of this study was to investigate the current geographic distribution and prevalence of Trichinella spp. and T. gondii antibodies in wild pigs using serum samples collected from 2014 to 2020. Serum samples from 36 states were tested for antibodies to Trichinella spp. (n = 7467) and T. gondii (n = 5984) using commercially available enzyme-linked immunosorbent assays. Seroprevalence for Trichinella spp. (12.4%, 927/7467) and T. gondii (40.8%, 2444/5984) are significantly higher compared to a previous 2006-2010 study across all regions. Results from this study also showed a lower seroprevalence (4.8%) for Trichinella spp. in the West region compared to the other regions (South: 13.4%; Midwest: 18.4%; Northeast: 19.1%). There were new detection records for antibodies to Trichinella spp. in 11 states, mostly in the West, Midwest, and Northeast regions compared to a previous study in 2014. Males and juveniles were less likely to be positive for Trichinella spp. antibodies, compared to females and older animals, respectively. Seroprevalence was similar for T. gondii across the regions (31.8-56%) with some states having particularly high seroprevalence (e.g., Hawaii 79.4% and Pennsylvania 68%). There were new T. gondii antibody detection records for 12 states, mostly in the West, Midwest, and Northeast regions. Adults were more likely than juveniles and subadults to be seropositive. These data confirm that the distribution and prevalence of antibodies for Trichinella spp. and T. gondii are increasing in the United States, likely driven by wild pig population growth and range expansion.


Swine Diseases , Toxoplasma , Toxoplasmosis, Animal , Trichinella , Trichinellosis , Male , Female , Swine , Animals , United States/epidemiology , Humans , Trichinellosis/epidemiology , Trichinellosis/veterinary , Prevalence , Seroepidemiologic Studies , Antibodies, Protozoan , Swine Diseases/epidemiology , Swine Diseases/parasitology , Toxoplasmosis, Animal/parasitology , Antibodies, Helminth , Pennsylvania , Sus scrofa
3.
J Wildl Dis ; 59(3): 520-523, 2023 07 01.
Article En | MEDLINE | ID: mdl-37151190

Chemical immobilization is widely used by wildlife and veterinary professionals for the safe handling of animals. A combination of nalbuphine (40 mg/mL), azaperone (10 mg/mL), and medetomidine (10 mg/mL), known as NAM, is a low-volume combination with field immobilization practicality and fewer regulations restricting its use in the US than some other drug combinations. We evaluated the safety and effectiveness of NAM as an immobilizing agent for raccoons (Procyon lotor). From May 2021 to February 2022, 16 adult raccoons were captured in cage traps and immobilized with 0.3 mL NAM intramuscularly (12 mg nalbuphine, 3 mg medetomidine, and 3 mg azaperone, regardless of body weight). After administration, time to sedation was measured; body temperature, heart rate, respiratory rate, and oxygen saturation were monitored and recorded every 5 min for 20 min. Each raccoon was weighed; the dose administered was calculated (range 2.2-4.1 mg/kg, mean 3 mg/kg). Mean induction time was 6 min (4-17 min); time to recovery following administration of 15 mg atipamezole, 7.5 mg naltrexone for reversal, was 10 min (6-18 min). Heart rate, oxygen saturation, and respiration rate remained steady during immobilization. Rectal temperature steadily declined. Overall, NAM appeared to be a practical option for raccoon immobilization, providing rapid induction and reversal as well as adequate sedation for short-term handling and minimally invasive sampling.


Medetomidine , Nalbuphine , Animals , Medetomidine/pharmacology , Azaperone/pharmacology , Raccoons , Nalbuphine/pharmacology , Hypnotics and Sedatives/pharmacology , Immobilization/veterinary , Heart Rate
4.
Parasit Vectors ; 15(1): 331, 2022 Sep 20.
Article En | MEDLINE | ID: mdl-36127708

BACKGROUND: We conducted a large-scale, passive regional survey of ticks associated with wildlife of the eastern United States. Our primary goals were to better assess the current geographical distribution of exotic Haemaphysalis longicornis and to identify potential wild mammalian and avian host species. However, this large-scale survey also provided valuable information regarding the distribution and host associations for many other important tick species that utilize wildlife as hosts. METHODS: Ticks were opportunistically collected by cooperating state and federal wildlife agencies. All ticks were placed in the supplied vials and host information was recorded, including host species, age, sex, examination date, location (at least county and state), and estimated tick burden. All ticks were identified to species using morphology, and suspect H. longicornis were confirmed through molecular techniques. RESULTS: In total, 1940 hosts were examined from across 369 counties from 23 states in the eastern USA. From these submissions, 20,626 ticks were collected and identified belonging to 11 different species. Our passive surveillance efforts detected exotic H. longicornis from nine host species from eight states. Notably, some of the earliest detections of H. longicornis in the USA were collected from wildlife through this passive surveillance network. In addition, numerous new county reports were generated for Amblyomma americanum, Amblyomma maculatum, Dermacentor albipictus, Dermacentor variabilis, and Ixodes scapularis. CONCLUSIONS: This study provided data on ticks collected from animals from 23 different states in the eastern USA between 2010 and 2021, with the primary goal of better characterizing the distribution and host associations of the exotic tick H. longicornis; however, new distribution data on tick species of veterinary or medical importance were also obtained. Collectively, our passive surveillance has detected numerous new county reports for H. longicornis as well as I. scapularis. Our study utilizing passive wildlife surveillance for ticks across the eastern USA is an effective method for surveying a diversity of wildlife host species, allowing us to better collect data on current tick distributions relevant to human and animal health.


Ixodes , Ixodidae , Tick Infestations , Amblyomma , Animals , Animals, Wild , Host Specificity , Humans , Mammals , Tick Infestations/epidemiology , Tick Infestations/veterinary , United States/epidemiology
5.
Ticks Tick Borne Dis ; 12(5): 101773, 2021 09.
Article En | MEDLINE | ID: mdl-34229999

Understanding the abiotic and biotic variables affecting tick populations is essential for studying the biology and health risks associated with vector species. We conducted a study on the phenology of exotic Haemaphysalis longicornis (Asian longhorned tick) at a site in Albemarle County, Virginia, United States. We also assessed the importance of wildlife hosts, habitats, and microclimate variables such as temperature, relative humidity, and wind speed on this exotic tick's presence and abundance. In addition, we determined the prevalence of infection with selected tick-borne pathogens in host-seeking H. longicornis. We determined that the seasonal activity of H. longicornis in Virginia was slightly different from previous studies in the northeastern United States. We observed nymphal ticks persist year-round but were most active in the spring, followed by a peak in adult activity in the summer and larval activity in the fall. We also observed a lower probability of collecting host-seeking H. longicornis in field habitats and the summer months. In addition, we detected H. longicornis on several wildlife hosts, including coyote (Canis latrans), eastern cottontail (Sylvilagus floridanus), raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), white-tailed deer (Odocoileus virginianus), woodchuck (Marmota monax), and a Peromyscus sp. mouse. This latter record is the first detection of a larval H. longicornis on a North American rodent host important to the enzootic maintenance of tick-borne pathogens of humans and animals. Finally, we continued to detect the exotic piroplasm parasite, Theileria orientalis Ikeda, in H. longicornis as well as other pathogens, including Rickettsia felis, Anaplasma phagocytophilum (AP-1), and a Hepatozoon sp. previously characterized in Amblyomma americanum. These represent some of the first detections of arthropod-borne pathogens native to the United States in host-seeking H. longicornis. These data increase our understanding of H. longicornis biology in the United States and provide valuable information into the future health risks associated with this tick and pathogens.


Ecosystem , Host-Parasite Interactions , Host-Pathogen Interactions , Ixodidae , Animals , Female , Ixodidae/growth & development , Ixodidae/microbiology , Ixodidae/parasitology , Ixodidae/physiology , Larva/growth & development , Larva/microbiology , Larva/parasitology , Larva/physiology , Male , Nymph/growth & development , Nymph/microbiology , Nymph/parasitology , Nymph/physiology , Seasons , Virginia
...