Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Cureus ; 16(2): e54527, 2024 Feb.
Article En | MEDLINE | ID: mdl-38516428

Incidental appendectomies (IAs) are often performed in laparotomies to prevent future complications caused by the buildup of scar tissue. Although neoplastic findings are rare, all appendectomy specimens should be sent for histopathological analysis. We present the case of a 38-year-old man found to have an appendiceal neuroendocrine tumor (NET) after receiving an IA secondary to a traumatic rectal perforation requiring exploratory laparotomy. Well-differentiated NETs isolated to the appendix have an excellent prognosis. Appendectomies are considered curative for NETs smaller than 2 cm that have not metastasized beyond the appendix. Appendiceal NETs are capable of secreting vasoactive substances and, therefore, causing carcinoid syndrome. However, the progression to carcinoid syndrome generally coincides with metastasis to the liver, indicating a poor prognosis. While histopathological analysis of appendectomy specimens rarely yields atypical findings, this analysis is crucial to ensure that the proper treatment is selected based on tumor progression in an appendectomy specimen staining positive for somatotropin and chromogranin.

2.
Plant Biotechnol J ; 22(3): 678-697, 2024 Mar.
Article En | MEDLINE | ID: mdl-37902192

Abiotic stresses such as salinity, heat and drought seriously impair plant growth and development, causing a significant loss in crop yield and ornamental value. Biotechnology approaches manipulating specific genes prove to be effective strategies in crop trait modification. The Arabidopsis vacuolar pyrophosphatase gene AVP1, the rice SUMO E3 ligase gene OsSIZ1 and the cyanobacterium flavodoxin gene Fld have previously been implicated in regulating plant stress responses and conferring enhanced tolerance to different abiotic stresses when individually overexpressed in various plant species. We have explored the feasibility of combining multiple favourable traits brought by individual genes to acquire superior plant performance. To this end, we have simultaneously introduced AVP1, OsSIZ1 and Fld in creeping bentgrass. Transgenic (TG) plants overexpressing these three genes performed significantly better than wild type controls and the TGs expressing individual genes under both normal and various abiotic stress conditions, exhibited significantly enhanced plant growth and tolerance to drought, salinity and heat stresses as well as nitrogen and phosphate starvation, which were associated with altered physiological and biochemical characteristics and delicately fine-tuned expression of genes involved in plant stress responses. Our results suggest that AVP1, OsSIZ1 and Fld function synergistically to regulate plant development and plant stress response, leading to superior overall performance under both normal and adverse environments. The information obtained provides new insights into gene stacking as an effective approach for plant genetic engineering. A similar strategy can be extended for the use of other beneficial genes in various crop species for trait modifications, enhancing agricultural production.


Arabidopsis Proteins , Arabidopsis , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Plant Development , Gene Expression Regulation, Plant/genetics , Droughts , Plant Proteins/genetics
3.
ACS Appl Mater Interfaces ; 15(12): 15185-15194, 2023 Mar 29.
Article En | MEDLINE | ID: mdl-36926823

Biofilm formation on biomaterial interfaces and the development of antibiotic-resistant bacteria have decreased the effectiveness of traditional antibiotic treatment of infections. In this project, ampicillin, a commonly used antibiotic, was conjugated with S-nitroso-N-acetylpenicillamine (SNAP), an S-nitrosothiol compound (RSNO) used for controlled nitric oxide (NO) release. This novel multifunctional molecule is the first of its kind to provide combined antibiotic and NO treatment of infectious pathogens. Characterization of the molecule included NMR, FTIR, and mass spectrometry. NO release behavior was also measured and compared to pure, unmodified SNAP. When evaluating the antimicrobial efficacy, the synthesized SNAPicillin molecule showed the lowest MIC value against Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-resistant Staphylococcus aureus compared to ampicillin and SNAP alone. SNAPicillin also displayed enhanced biofilm dispersal and killing of both bacterial strains when treating a 48 h biofilm preformed on a polymer surface. The antibacterial results combined with the biocompatibility of the molecule show great promise for infection prevention and treatment of polymeric interfaces to reduce medical device-related infections.


Methicillin-Resistant Staphylococcus aureus , Nitric Oxide , Nitric Oxide/chemistry , S-Nitroso-N-Acetylpenicillamine/pharmacology , S-Nitroso-N-Acetylpenicillamine/chemistry , Anti-Bacterial Agents/pharmacology , Ampicillin/pharmacology , Bacteria , Biofilms
4.
J Colloid Interface Sci ; 640: 144-161, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-36842420

Light-controlled therapies offer a promising strategy to prevent and suppress infections caused by numerous bacterial pathogens. Excitation of exogenously supplied photosensitizers (PS) at specific wavelengths elicits levels of reactive oxygen intermediates toxic to bacteria. Porphyrin-based supramolecular nanostructure frameworks (SNF) are effective PS with unique physicochemical properties that have led to their widespread use in photomedicine. Herein, we developed a nitric oxide (NO) releasing, biocompatible, and stable porphyrin-based SNF (SNF-NO), which was achieved through a confined noncovalent self-assembly process based on π-π stacking. Characterization of the SNFs via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the formation of three-dimensional, well-defined octahedral structures. These SNF-NO were shown to exhibit a red shift due to the noncovalent self-assembly of porphyrins, which also show extended light absorption to broadly cover the entire visible light spectrum to enhance photodynamic therapy (PDT). Under visible light irradiation (46 J cm-2), the SNF generates high yields of singlet oxygen (1O2) radicals, hydroxyl radicals (HO), superoxide radicals (O2), and peroxynitrite (ONOO-) radicals that have shown potential to enhance antimicrobial photodynamic therapy (APDT) against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli (E. coli). The resulting SNFs also exhibit significant biofilm dispersion and a decrease in biomass production. The combination of robust photosensitizer SNFs with nitric oxide-releasing capabilities is dynamic in its ability to target pathogenic infections while remaining nontoxic to mammalian cells. The engineered SNFs have enormous potential for treating and managing microbial infections.


Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Porphyrins , Animals , Nitric Oxide , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Light , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Mammals
5.
ACS Appl Mater Interfaces ; 15(5): 7610-7626, 2023 Feb 08.
Article En | MEDLINE | ID: mdl-36700859

Hybrid organic-inorganic materials are attracting enormous interest in materials science due to the combination of multiple advantageous properties of both organic and inorganic components. Taking advantage of a simple, scalable, solvent-free hard-sacrificial method, we report the successful fabrication of three-dimensional hybrid porous foams by integrating two types of fillers into a poly(dimethylsiloxane) (PDMS) framework. These fillers consist of hydrophobic electrically conductive graphene (GR) nanoplatelets and hydrophobic bactericidal copper (Cu) microparticles. The fillers were utilized to create the hierarchical rough structure with low-surface-energy properties on the PDMS foam surfaces, leading to remarkable superhydrophobicity/superoleophilicity with contact angles of 158 and 0° for water and oil, respectively. The three-dimensional interconnected porous foam structures facilitated high oil adsorption capacity and excellent reusability as well as highly efficient oil/organic solvent-water separation in turbulent, corrosive, and saline environments. Moreover, the introduction of the fillers led to a significant improvement in the electrical conductivity and biofouling resistance (vs whole blood, fibrinogen, platelet cells, and Escherichia coli) of the foams. We envision that the developed composite strategy will pave a facile, scalable, and effective way for fabricating novel multifunctional hybrid materials with ideal properties that may find potential use in a broad range of biomedical, energy, and environmental applications.

6.
ACS Biomater Sci Eng ; 8(7): 3066-3077, 2022 07 11.
Article En | MEDLINE | ID: mdl-35704780

Clinical applications of scaffolds and implants have been associated with bacterial infection resulting in impaired tissue regeneration. Nanofibers provide a versatile structure for both antimicrobial molecule delivery and tissue engineering. In this study, the nitric oxide (NO) donor molecule S-nitrosoglutathione (GSNO) and the natural biodegradable polymer zein (ZN) were combined with silk fibroin (SF) to develop antibacterial and biodegradable nanofibrous scaffolds for tissue engineering applications. The compatibility and intermolecular interactions of SF and ZN were studied using differential scanning calorimetry and Fourier transform infrared spectroscopy. The incorporation of ZN increased the hydrophobicity of the fibers and resulted in a more controlled and prolonged NO release profile lasting for 48 h. Moreover, the degradation kinetics of the fibers was significantly improved after blending with ZN. The results of tensile testing indicated that the addition of ZN and GSNO had a positive effect on the strength and stretchability of SF fibers and did not adversely affect their mechanical properties. Finally, due to the antibacterial properties of both NO and ZN, the SF-ZN-GSNO fibers showed a synergistically high antibacterial efficacy with 91.6 ± 2.5% and 77.5 ± 3.1% reduction in viability of adhered Staphylococcus aureus and Escherichia coli after 24 h exposure, respectively. The developed NO-releasing fibers were not only antibacterial but also non-cytotoxic and successfully enhanced the proliferation and growth of fibroblast cells, which was quantitatively studied by a CCK-8 assay and visually observed through fluorescent staining. Overall, SF-ZN-GSNO fibers developed in this study were biodegradable and highly antibacterial and showed great cytocompatibility with fibroblasts, indicating their promising potential for a range of tissue engineering and medical device applications.


Fibroins , Nanofibers , Zein , Anti-Bacterial Agents/pharmacology , Fibroins/chemistry , Fibroins/pharmacology , Nanofibers/chemistry , Nitric Oxide , Tissue Scaffolds/chemistry , Zein/pharmacology
7.
ACS Appl Bio Mater ; 5(4): 1519-1527, 2022 04 18.
Article En | MEDLINE | ID: mdl-35343228

Although frequently used, venous catheters are often associated with serious complications such as infection and thrombosis. Lock solution therapies are clinically used to deter these issues but generally address only infection or thrombosis with limited success. Here, we report the development of a dual-functional lock therapy using nitric oxide (NO) donor molecule, S-nitrosoglutathione (GSNO). NO is a potent, broad-spectrum antimicrobial agent that also temporarily inhibits platelet activation, preventing thrombosis. Furthermore, NO has antibiofilm actions, an ability that traditional antibiotic lock solutions lack, thus limiting their efficacy. In this work, different concentrations of GSNO were characterized via NO analysis to determine a range of NO-releasing lock solution (NOreLS) concentrations to investigate and to demonstrate prolonged potential efficacy. Tested against clinically used vancomycin and gentamicin lock solutions, GSNO-based NOreLS repeatedly outperformed in models of different stages of catheter infections. NOreLS also prevented clot formation when exposed to whole blood, showing increased efficacy compared to a heparin lock solution. Moreover, NOreLS was demonstrated to be biocompatible via hemolysis and cytotoxicity assays. NOreLS has excellent potential for safely and effectively preventing infection and thrombosis related to catheter usage.


Catheter-Related Infections , Thrombosis , Anti-Bacterial Agents/pharmacology , Catheter-Related Infections/prevention & control , Humans , Nitric Oxide , Thrombosis/prevention & control , Vancomycin/pharmacology
8.
ACS Appl Mater Interfaces ; 14(9): 11116-11123, 2022 Mar 09.
Article En | MEDLINE | ID: mdl-35225600

Blood-contacting medical devices (BCMDs) are inevitably challenged by thrombi formation, leading to occlusion of flow and device failure. Ideal BCMDs seek to mimic the intrinsic antithrombotic properties of the human vasculature to locally prevent thrombotic complications, negating the need for systemic anticoagulation. An emerging category of BCMD technology utilizes nitric oxide (NO) as a hemocompatible agent, as the vasculature's endothelial layer naturally releases NO to inhibit platelet activation and consumption. In this paper, we report for the first time the novel impregnation of S-nitrosoglutathione (GSNO) into polymeric poly(vinyl chloride) (PVC) tubing via an optimized solvent-swelling method. Material testing revealed an optimized GSNO-PVC material that had adequate GSNO loading to achieve NO flux values within the physiological endothelial NO flux range for a 4 h period. Through in vitro hemocompatibility testing, the optimized material was deemed nonhemolytic (hemolytic index <2%) and capable of reducing platelet activation, suggesting that the material is suitable for contact with whole blood. Furthermore, an in vivo 4 h extracorporeal circulation (ECC) rabbit thrombogenicity model confirmed the blood biocompatibility of the optimized GSNO-PVC. Platelet count remained near 100% for the novel GSNO-impregnated PVC loops (1 h, 91.08 ± 6.27%; 2 h, 95.68 ± 0.61%; 3 h, 97.56 ± 8.59%; 4 h, 95.11 ± 8.30%). In contrast, unmodified PVC ECC loops occluded shortly after the 2 h time point and viable platelet counts quickly diminished (1 h, 85.67 ± 12.62%; 2 h, 54.46 ± 10.53%; 3 h, n/a; 4 h, n/a). The blood clots for GSNO-PVC loops (190.73 ± 72.46 mg) compared to those of unmodified PVC loops (866.50 ± 197.98 mg) were significantly smaller (p < 0.01). The results presented in this paper recommend further investigation in long-term animal models and suggest that GSNO-PVC has the potential to serve as an alternative to systemic anticoagulation in BCMD applications.


Polymers/pharmacology , S-Nitrosoglutathione/pharmacology , Animals , Blood Coagulation/drug effects , Extracorporeal Circulation/methods , Hemolysis/drug effects , Male , Materials Testing , Models, Animal , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Platelet Activation/drug effects , Polymers/therapeutic use , Polyvinyl Chloride/chemistry , Rabbits , S-Nitrosoglutathione/chemistry , S-Nitrosoglutathione/therapeutic use , Surface Properties , Swine , Thrombosis/prevention & control
9.
ACS Appl Bio Mater ; 5(2): 700-710, 2022 02 21.
Article En | MEDLINE | ID: mdl-35119808

Although numerous prevention and intervention techniques have been developed to counteract catheter-associated urinary tract infections (CAUTIs), urinary catheters remain one of the most common sources of hospital-acquired infections. Nitric oxide (NO), a gaseous free radical responsible for regulating many physiological functions in the body, has gained immense popularity due to its potent, broad-spectrum antimicrobial activity, which is capable of combating medical device-associated infections. In this work, a straightforward solvent-swelling method was used to load the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) into commercial latex catheters (SNAP-UCs) for the first time. The effects of swelling catheters with different concentrations of SNAP solutions (25-125 mg/mL SNAP in tetrahydrofuran (THF)) were studied by measuring the NO release kinetics, SNAP loading, and SNAP leaching. SNAP-UCs impregnated with a 50 mg/mL SNAP-THF solution were found to maximize the amount of SNAP loaded into the latex (0.115 ± 0.009 mg SNAP/mg catheter) and showed physiological levels of NO release (>2 × 10-10 mol min-1 cm-2) over 7 days and minimal SNAP leaching (<2%). SNAP-UCs showed impressive in vitro contact-based and diffusible antimicrobial efficacy against three CAUTI-associated pathogens, reducing the viability of adhered and planktonic Escherichia coli, Proteus mirabilis, and Staphylococcus aureus by ∼98.0 to 99.1% (adhered) and 86.3-96.3% (planktonic) compared to control latex catheters. In vitro cytotoxicity against 3T3 mouse fibroblasts using a CCK-8 assay showed that SNAP-UCs were noncytotoxic (>90% viability). In summary, SNAP-UCs show stable, noncytotoxic NO release characteristics capable of potent, broad-spectrum antimicrobial activity, demonstrating great potential for reducing the devastating effects associated with CAUTIs.


Nitric Oxide , Urinary Tract Infections , Animals , Escherichia coli , Latex , Mice , Nitric Oxide/pharmacology , Nitric Oxide Donors/pharmacology , S-Nitroso-N-Acetylpenicillamine/pharmacology , Urinary Catheters , Urinary Tract Infections/drug therapy
10.
J Colloid Interface Sci ; 608(Pt 1): 1015-1024, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-34785450

Addressing thrombosis and biofouling of indwelling medical devices within healthcare institutions is an ongoing problem. In this work, two types of ultra-low fouling surfaces (i.e., superhydrophobic and lubricant-infused slippery surfaces) were fabricated to enhance the biocompatibility of commercial medical grade silicone rubber (SR) tubes that are widely used in clinical care. The superhydrophobic (SH) coatings on the tubing substrates were successfully created by dip-coating in superhydrophobic paints consisting of polydimethylsiloxane (PDMS), perfluorosilane-coated hydrophobic zinc oxide (ZnO) and copper (Cu) nanoparticles (NPs) in tetrahydrofuran (THF). The SH surfaces were converted to lubricant-infused slippery (LIS) surfaces through the infusion of silicone oil. The anti-biofouling properties of the coatings were investigated by adsorption of platelets, whole blood coagulation, and biofilm formation in vitro. The results revealed that the LIS tubes possess superior resistance to clot formation and platelet adhesion than uncoated and SH tubes. In addition, bacterial adhesion was investigated over 7 days in a drip-flow bioreactor, where the SH-ZnO-Cu tube and its slippery counterpart significantly reduced bacterial adhesion and biofilm formation of Escherichia coli relative to control tubes (>5 log10 and >3 log10 reduction, respectively). The coatings also demonstrated good compatibility with fibroblast cells. Therefore, the proposed coatings may find potential applications in high-efficiency on-demand prevention of biofilm and thrombosis formation on medical devices to improve their biocompatibility and reduce the risk of complications from medical devices.


Biofouling , Thrombosis , Bacterial Adhesion , Biofilms , Biofouling/prevention & control , Humans , Hydrophobic and Hydrophilic Interactions , Surface Properties , Thrombosis/prevention & control
11.
ACS Biomater Sci Eng ; 8(1): 273-283, 2022 01 10.
Article En | MEDLINE | ID: mdl-34890206

Bacterial infection is one of the principal reasons for the failure of tissue engineering scaffolds. Therefore, the development of multifunctional scaffolds that not only are able to guide tissue regeneration but also can inhibit bacterial colonization is of great importance for tissue engineering applications. In this study, a highly antibacterial, biocompatible, and biodegradable scaffold based on silk fibroin (SF) and gelatin methacryloyl (GelMA) was prepared. Sequential cross-linking of GelMA and SF under UV irradiation and methanol treatment, respectively, resulted in the formation of interpenetrating network (IPN) hydrogels with a porous structure. In addition, impregnation of the hydrogels with a nitric oxide (NO) donor molecule, S-nitroso-N-acetylpenicillamine (SNAP), led to the development of NO-releasing scaffolds with strong antibacterial properties. According to the obtained results, the addition of SF to GelMA hydrogels caused an enhancement in the mechanical properties and NO release kinetics and prevented their rapid enzymatic degradation in aqueous media. Furthermore, swelling the GelMA-SF scaffolds with SNAP resulted in a bacteria reduction efficiency of >99.9% against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The scaffolds also showed great cytocompatibility in vitro by increasing the proliferation and supporting the adhesion of 3T3 mouse fibroblast cells. Overall, GelMA-SF-SNAP showed great promise to be used as a scaffold for tissue engineering and wound healing applications.


Fibroins , Hydrogels , Animals , Gelatin , Methacrylates , Mice , Nitric Oxide , Polymers , Tissue Engineering
12.
Prog Mater Sci ; 1302022 Oct.
Article En | MEDLINE | ID: mdl-36660552

When blood first encounters the artificial surface of a medical device, a complex series of biochemical reactions is triggered, potentially resulting in clinical complications such as embolism/occlusion, inflammation, or device failure. Preventing thrombus formation on the surface of blood-contacting devices is crucial for maintaining device functionality and patient safety. As the number of patients reliant on blood-contacting devices continues to grow, minimizing the risk associated with these devices is vital towards lowering healthcare-associated morbidity and mortality. The current standard clinical practice primarily requires the systemic administration of anticoagulants such as heparin, which can result in serious complications such as post-operative bleeding and heparin-induced thrombocytopenia (HIT). Due to these complications, the administration of antithrombotic agents remains one of the leading causes of clinical drug-related deaths. To reduce the side effects spurred by systemic anticoagulation, researchers have been inspired by the hemocompatibility exhibited by natural phenomena, and thus have begun developing medical-grade surfaces which aim to exhibit total hemocompatibility via biomimicry. This review paper aims to address different bio-inspired surface modifications that increase hemocompatibility, discuss the limitations of each method, and explore the future direction for hemocompatible surface research.

13.
ACS Appl Mater Interfaces ; 13(48): 56931-56943, 2021 Dec 08.
Article En | MEDLINE | ID: mdl-34818503

It has been previously demonstrated that metal nanoparticles embedded into polymeric materials doped with nitric oxide (NO) donor compounds can accelerate the release rate of NO for therapeutic applications. Despite the advantages of elevated NO surface flux for eradicating opportunistic bacteria in the initial hours of application, metal nanoparticles can often trigger a secondary biocidal effect through leaching that can lead to unfavorable cytotoxic responses from host cells. Alternatively, copper-based metal organic frameworks (MOFs) have been shown to stabilize Cu2+/1+ via coordination while demonstrating longer-term catalytic performance compared to their salt counterparts. Herein, the practical application of MOFs in NO-releasing polymeric substrates with an embedded NO donor compound was investigated for the first time. By developing composite thermoplastic silicon polycarbonate polyurethane (TSPCU) scaffolds, the catalytic effects achievable via intrapolymeric interactions between an MOF and NO donor compound were investigated using the water-stable copper-based MOF H3[(Cu4Cl)3(BTTri)8-(H2O)12]·72H2O (CuBTTri) and the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). By creating a multifunctional triple-layered composite scaffold with CuBTTri and SNAP, the surface flux of NO from catalyzed SNAP decomposition was found tunable based on the variable weight percent CuBTTri incorporation. The tunable NO surface fluxes were found to elicit different cytotoxic responses in human cell lines, enabling application-specific tailoring. Challenging the TSPCU-NO-MOF composites against 24 h bacterial growth models, the enhanced NO release was found to elicit over 99% reduction in adhered and over 95% reduction in planktonic methicillin-resistant Staphylococcus aureus, with similar results observed for Escherichia coli. These results indicate that the combination of embedded MOFs and NO donors can be used as a highly efficacious tool for the early prevention of biofilm formation on medical devices.


Anti-Bacterial Agents/pharmacology , Biomimetic Materials/pharmacology , Metal-Organic Frameworks/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Nitric Oxide Donors/pharmacology , Nitric Oxide/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Catalysis , Cells, Cultured , Copper/chemistry , Humans , Materials Testing , Microbial Sensitivity Tests , Molecular Conformation , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/chemistry , Particle Size , Surface Properties
14.
ACS Appl Mater Interfaces ; 13(44): 52425-52434, 2021 Nov 10.
Article En | MEDLINE | ID: mdl-34723458

Foreign body response and infection are two universal complications that occur with indwelling medical devices. In response, researchers have developed different antimicrobial and antifouling surface strategies to minimize bacterial colonization and fibrous encapsulation. In this study, the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) and silicone oil were impregnated into silicone rubber cannulas (SR-SNAP-Si) using a solvent swelling method to improve the antimicrobial properties and decrease the foreign body response. The fabricated SR-SNAP-Si cannulas demonstrated a stable, prolonged NO release, exhibited minimal SNAP leaching, and maintained sliding angles < 15° for 21 days. SR-SNAP-Si cannulas displayed enhanced antimicrobial efficacy against Staphylococcus aureus in a 7-day biofilm bioreactor study, reducing the viability of adhered bacteria by 99.2 ± 0.2% compared to unmodified cannulas while remaining noncytotoxic toward human fibroblast cells. Finally, SR-SNAP-Si cannulas were evaluated for the first time in a 14- and 21-day subcutaneous mouse model, showing significantly enhanced biocompatibility compared to control cannulas by reducing the thickness of fibrous encapsulation by 60.9 ± 6.1 and a 60.8 ± 10.5% reduction in cell density around the implant site after 3 weeks. Thus, this work demonstrates that antifouling, NO-releasing surfaces can improve the lifetime and safety of indwelling medical devices.

15.
ACS Appl Mater Interfaces ; 13(37): 43892-43903, 2021 Sep 22.
Article En | MEDLINE | ID: mdl-34516076

Despite technological advancement, nosocomial infections are prevalent due to the rise of antibiotic resistance. A combinatorial approach with multimechanistic antibacterial activity is desired for an effective antibacterial medical device surface strategy. In this study, an antimicrobial peptide, nisin, is immobilized onto biomimetic nitric oxide (NO)-releasing medical-grade silicone rubber (SR) via mussel-inspired polydopamine (PDA) as a bonding agent to reduce the risk of infection. Immobilization of nisin on NO-releasing SR (SR-SNAP-Nisin) and the surface characteristics were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy and contact angle measurements. The NO release profile (7 days) and diffusion of SNAP from SR-SNAP-Nisin were quantified using chemiluminescence-based nitric oxide analyzers and UV-vis spectroscopy, respectively. Nisin quantification showed a greater affinity of nisin immobilization toward SNAP-doped SR. Matrix-assisted laser desorption/ionization mass spectrometry analysis on surface nisin leaching for 120 h under physiological conditions demonstrated the stability of nisin immobilization on PDA coatings. SR-SNAP-Nisin shows versatile in vitro anti-infection efficacy against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in the planktonic and adhered states. Furthermore, the combination of NO and nisin has a superior ability to impair biofilm formation on polymer surfaces. SR-SNAP-Nisin leachates did not elicit cytotoxicity toward mouse fibroblast cells and human umbilical vein endothelial cells, indicating the biocompatibility of the material in vitro. The preventative and therapeutic potential of SR-SNAP-Nisin dictated by two bioactive agents may offer a promising antibacterial surface strategy.


Anti-Bacterial Agents/pharmacology , Immobilized Proteins/pharmacology , Nisin/pharmacology , Nitric Oxide Donors/pharmacology , S-Nitroso-N-Acetylpenicillamine/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Cell Survival/drug effects , Escherichia coli/drug effects , Escherichia coli/physiology , Immobilized Proteins/chemistry , Immobilized Proteins/toxicity , Indoles/chemistry , Indoles/toxicity , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Nisin/chemistry , Nisin/toxicity , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/toxicity , Polymers/chemistry , Polymers/toxicity , S-Nitroso-N-Acetylpenicillamine/chemistry , S-Nitroso-N-Acetylpenicillamine/toxicity , Silicone Elastomers/chemistry , Silicone Elastomers/toxicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
16.
ACS Appl Mater Interfaces ; 13(17): 19613-19624, 2021 May 05.
Article En | MEDLINE | ID: mdl-33904311

Indwelling medical devices currently used to diagnose, monitor, and treat patients invariably suffer from two common clinical complications: broad-spectrum infections and device-induced thrombosis. Currently, infections are managed through antibiotic or antifungal treatment, but the emergence of antibiotic resistance, the formation of recalcitrant biofilms, and difficulty identifying culprit pathogens have made treatment increasingly challenging. Additionally, systemic anticoagulation has been used to manage device-induced thrombosis, but subsequent life-threatening bleeding events associated with all available therapies necessitates alternative solutions. In this study, a broad-spectrum antimicrobial, antithrombotic surface combining the incorporation of the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) with the immobilization of the antifungal Amphotericin B (AmB) on polydimethylsiloxane (PDMS) was developed in a two-step process. This novel strategy combines the key advantages of NO, a bactericidal agent and platelet inhibitor, with AmB, a potent antifungal agent. We demonstrated that SNAP-AmB surfaces significantly reduced the viability of adhered Staphylococcus aureus (99.0 ± 0.2%), Escherichia coli (89.7 ± 1.0%), and Candida albicans (93.5 ± 4.2%) compared to controls after 24 h of in vitro exposure. Moreover, SNAP-AmB surfaces reduced the number of platelets adhered by 74.6 ± 3.9% compared to controls after 2 h of in vitro porcine plasma exposure. Finally, a cytotoxicity assay validated that the materials did not present any cytotoxic side effects toward human fibroblast cells. This novel approach is the first to combine antifungal surface functionalization with NO-releasing technology, providing a promising step toward reducing the rate of broad-spectrum infection and thrombosis associated with indwelling medical devices.


Amphotericin B/therapeutic use , Antifungal Agents/therapeutic use , Infection Control/methods , Nitric Oxide/metabolism , Thrombosis/prevention & control , Amphotericin B/administration & dosage , Animals , Antifungal Agents/administration & dosage , Bacterial Adhesion/drug effects , Blood Platelets/drug effects , Cell Adhesion/drug effects , Humans , Nitric Oxide Donors/administration & dosage , Nitroprusside/administration & dosage , Swine
17.
ASAIO J ; 67(7): 798-808, 2021 07 01.
Article En | MEDLINE | ID: mdl-33534236

Coagulopathic complications during extracorporeal life support (ECLS) result from two parallel processes: 1) foreign surface contact and shear stress during blood circulation and 2) administration of anticoagulant drugs to prevent circuit thrombosis. To address these problems, biocompatible surfaces are developed to prevent foreign surface-induced coagulopathy, reducing or eliminating the need for anticoagulants. Tethered liquid perfluorocarbon (TLP) is a nonadhesive coating that prevents adsorption of plasma proteins and thrombus deposition. We examined application of TLP to complete ECLS circuits (membranes, tubing, pumps, and catheters) during 72 hours of ECLS in healthy swine (n = 5/group). We compared TLP-coated circuits used without systemic anticoagulation to standard of care: heparin-coated circuits with continuous heparin infusion. Coagulopathic complications, device performance, and systemic effects were assessed. We hypothesized that TLP reduces circuit thrombosis and iatrogenic bleeding, without impeding gas exchange performance or causing untoward effects. No difference in bleeding or thrombotic complication rate was observed; however, circuit occlusion occurred in both groups (TLP = 2/5; CTRL = 1/5). TLP required elevated sweep gas rate to maintain normocapnia during ECLS versus CTRL (10-20 vs. 5 L/min; p = 0.047), suggesting impaired gas exchange. Thrombus deposition and protein adhesion on explanted membranes were comparable, and TLP did not preserve platelet or blood cell counts relative to controls. We conclude that neither TLP nor standard of care is an efficacious solution to prevent coagulation disturbances during ECLS. Further testing of promising biomaterials for ECLS utilizing the model outlined here is warranted.


Extracorporeal Membrane Oxygenation , Animals , Anticoagulants/adverse effects , Blood Coagulation/drug effects , Extracorporeal Circulation , Extracorporeal Membrane Oxygenation/adverse effects , Fluorocarbons/pharmacology , Heparin/pharmacology , Swine
18.
J Colloid Interface Sci ; 590: 277-289, 2021 May 15.
Article En | MEDLINE | ID: mdl-33548611

Halloysite nanotubes (HNTs) are natural aluminosilicate clay that have been extensivelyexplored fordelivery of bioactive agents in biomedical applications because of their desirable features including unique hollow tubular structure, good biocompatibility, high mechanical strength, and extensive functionality. For the first time, in this work, functionalized HNTs are developed as a delivery platform for nitric oxide (NO), a gaseous molecule, known for its important roles in the regulation of various physiological processes. HNTs were first hydroxylated and modified with an aminosilane crosslinker, (3-aminopropyl) trimethoxysilane (APTMS), to enable the covalent attachment of a NO donor precursor, N-acetyl-d-penicillamine (NAP). HNT-NAP particles were then converted to NO-releasing S-nitroso-N-acetyl-penicillamine HNT-SNAP by nitrosation. The total NO loading on the resulting nanotubes was 0.10 ± 0.07 µmol/mg which could be released using different stimuli such as heat and light. Qualitative (Fourier-transform infrared spectroscopy and Nuclear magnetic resonance) and quantitative (Ninhydrin and Ellman) analyses were performed to confirm successful functionalization of HNTs at each step. Field emission scanning electron microscopy (FE-SEM) showed that the hollow tubular morphology of the HNTs was preserved after modification. HNT-SNAP showed concentration-dependent antibacterial effects against Gram-positive Staphylococcus aureus (S. aureus), resulting in up to 99.6% killing efficiency at a concentration of 10 mg/mL as compared to the control. Moreover, no significant cytotoxicity toward 3T3 mouse fibroblast cells was observed at concentrations equal or below 2 mg/mL of HNT-SNAP according to a WST-8-based cytotoxicity assay. The SNAP-functionalized HNTs represent a novel and efficient NO delivery system that holds the potential to be used, either alone or in combination with polymers for different biomedical applications.


Nanotubes , Nitric Oxide , Aluminum Silicates , Animals , Clay , Mice , Polymers , Staphylococcus aureus
19.
Biomater Sci ; 9(7): 2413-2423, 2021 Apr 07.
Article En | MEDLINE | ID: mdl-33599226

Surface-induced thrombosis is a frequent, critical issue for blood-contacting medical devices that poses a serious threat to patient safety and device functionality. Antithrombotic material design strategies including the immobilization of anticoagulants, alterations in surface chemistries and morphology, and the release of antithrombotic compounds have made great strides in the field with the ultimate goal of circumventing the need for systemic anticoagulation, but have yet to achieve the same hemocompatibility as the native endothelium. Given that the endothelium achieves this state through the use of many mechanisms of action, there is a rising trend in combining these established design strategies for improved antithrombotic actions. Here, we describe this emerging paradigm, highlighting the apparent advantages of multiple antithrombotic mechanisms of action and discussing the demonstrated potential of this new direction.


Fibrinolytic Agents , Thrombosis , Anticoagulants/pharmacology , Blood Coagulation , Fibrinolytic Agents/therapeutic use , Humans , Thrombosis/drug therapy , Thrombosis/prevention & control
20.
ACS Biomater Sci Eng ; 7(2): 517-526, 2021 02 08.
Article En | MEDLINE | ID: mdl-33397083

Bacterial infections have been increasingly recognized as the major reason for the failure of tissue engineering scaffolds. Therefore, there is a need for novel and multifunctional biomaterials that not only enhance tissue regeneration but also can combat infections. An antibacterial and bioactive scaffold was fabricated in this study by incorporation of honey and a nitric oxide (NO) donor, S-nitroso-N-acetyl-penicillamine (SNAP), into polylactic acid (PLA) nanofibers using a single-jet electrospinning method. The morphology of the prepared nanofibers was observed using a scanning electron microscope. PLA/honey/SNAP (PLA/HN/SNAP) nanofibers had an average diameter of 624.92 ± 137.69 nm and showed a sustained release of NO for 48 h. The scaffolds were characterized for their chemical composition via Fourier-transform infrared spectroscopy. Moreover, the tensile properties of nanofibers along with their wettability, water retention ability, and water vapor transmission rate were evaluated. The results of antibacterial studies revealed that the synergistic combination of honey and SNAP significantly reduced the viability of Gram positive Staphylococcus aureus and Gram negative Escherichia coli. In addition, qualitative and quantitative 3T3 fibroblast cell culturing experiments proved that the PLA/HN/SNAP scaffolds supported better cell attachment and proliferation compared to PLA. The promising results obtained in this study indicate that PLA/HN/SNAP nanofibrous scaffolds have great potential for tissue engineering applications.


Honey , Nanofibers , Animals , Anti-Bacterial Agents/pharmacology , Mice , Penicillamine , Tissue Scaffolds
...