Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 325(5): F656-F668, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706232

RESUMEN

The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.


Asunto(s)
Factores de Transcripción ARNTL , Hipertensión , Animales , Masculino , Ratones , Factores de Transcripción ARNTL/metabolismo , Presión Sanguínea/fisiología , Ritmo Circadiano/fisiología , Citocinas , Dieta , Hipertensión/genética , Hipertensión/prevención & control , Riñón/metabolismo , Ratones Noqueados , Cloruro de Sodio Dietético
2.
Function (Oxf) ; 4(2): zqad001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778748

RESUMEN

Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global Bmal1 knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific Bmal1 (ASCre/+ ::Bmal1) KO mice were generated using aldosterone synthase Cre recombinase to KO Bmal1 in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male ASCre/+ ::Bmal1 KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. AS Cre/+ ::Bmal1 KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.


Asunto(s)
Factores de Transcripción ARNTL , Presión Sanguínea , Relojes Circadianos , Conducta Alimentaria , Animales , Masculino , Ratones , Factores de Transcripción ARNTL/genética , Encéfalo/metabolismo , Relojes Circadianos/genética , Corticosterona , Ratones Noqueados
3.
Cell Rep ; 42(1): 111982, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640301

RESUMEN

Cellular circadian clocks direct a daily transcriptional program that supports homeostasis and resilience. Emerging evidence has demonstrated age-associated changes in circadian functions. To define age-dependent changes at the systems level, we profile the circadian transcriptome in the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in three age groups. We find age-dependent and tissue-specific clock output changes. Aging reduces the number of rhythmically expressed genes (REGs), indicative of weakened circadian control. REGs are enriched for the hallmarks of aging, adding another dimension to our understanding of aging. Analyzing differential gene expression within a tissue at four different times of day identifies distinct clusters of differentially expressed genes (DEGs). Increased variability of gene expression across the day is a common feature of aged tissues. This analysis extends the landscape for understanding aging and highlights the impact of aging on circadian clock function and temporal changes in gene expression.


Asunto(s)
Relojes Circadianos , Transcriptoma , Masculino , Animales , Ratones , Transcriptoma/genética , Ritmo Circadiano/genética , Relojes Circadianos/genética , Hipotálamo , Envejecimiento/genética , Envejecimiento/metabolismo
4.
Can J Physiol Pharmacol ; 101(3): 136-146, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450128

RESUMEN

Endothelin-1 (ET-1) is a peptide hormone that acts on its receptors to regulate sodium handling in the kidney's collecting duct. Dysregulation of the endothelin axis is associated with various diseases, including salt-sensitive hypertension and chronic kidney disease. Previously, our lab has shown that the circadian clock gene PER1 regulates ET-1 levels in mice. However, the regulation of ET-1 by PER1 has never been investigated in rats. Therefore, we used a novel model where knockout of Per1 was performed in Dahl salt-sensitive rat background (SS Per1 -/-) to test a hypothesis that PER1 regulates the ET-1 axis in this model. Here, we show increased renal ET-1 peptide levels and altered endothelin axis gene expression in several tissues, including the kidney, adrenal glands, and liver in SS Per1 -/- compared with control SS rats. Edn1 antisense lncRNA Edn1-AS, which has previously been suggested to be regulated by PER1, was also altered in SS Per1 -/- rats compared with control SS rats. These data further support the hypothesis that PER1 is a negative regulator of Edn1 and is important in the regulation of the endothelin axis in a tissue-specific manner.


Asunto(s)
Relojes Circadianos , Hipertensión , Ratas , Ratones , Animales , Ratas Endogámicas Dahl , Relojes Circadianos/genética , Endotelinas , Riñón/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Factores de Transcripción/metabolismo , Presión Sanguínea/fisiología , Proteínas Circadianas Period/genética
5.
Nucleic Acids Res ; 50(22): 12872-12884, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36511874

RESUMEN

Single-stranded DNA binding proteins (SSBs) avidly bind ssDNA and yet enzymes that need to act during DNA replication and repair are not generally impeded by SSB, and are often stimulated by SSB. Here, the effects of Escherichia coli SSB on the activities of the DNA polymerase processivity clamp loader were investigated. SSB enhances binding of the clamp loader to DNA by increasing the lifetime on DNA. Clamp loading was measured on DNA substrates that differed in length of ssDNA overhangs to permit SSB binding in different binding modes. Even though SSB binds DNA adjacent to single-stranded/double-stranded DNA junctions where clamps are loaded, the rate of clamp loading on DNA was not affected by SSB on any of the DNA substrates. Direct measurements of the relative timing of DNA-SSB remodeling and enzyme-DNA binding showed that the clamp loader rapidly remodels SSB on DNA such that SSB has little effect on DNA binding rates. However, when SSB was mutated to reduce protein-protein interactions with the clamp loader, clamp loading was inhibited by impeding binding of the clamp loader to DNA. Thus, protein-protein interactions between the clamp loader and SSB facilitate rapid DNA-SSB remodeling to allow rapid clamp loader-DNA binding and clamp loading.


Asunto(s)
Proteínas de Escherichia coli , Replicación del ADN/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Reparación del ADN/genética
6.
Hypertension ; 79(11): 2519-2529, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36093781

RESUMEN

BACKGROUND: Circadian rhythms play an essential role in physiological function. The molecular clock that underlies circadian physiological function consists of a core group of transcription factors, including the protein PER1 (Period1). Studies in mice show that PER1 plays a role in the regulation of blood pressure and renal sodium handling; however, the results are dependent on the strain being studied. Using male Dahl salt-sensitive (SS) rats with global knockout of PER1 (SSPer1-/-), we aim to test the hypothesis that PER1 plays a key role in the regulation of salt-sensitive blood pressure. METHODS: The model was generated using CRISPR/Cas9 and was characterized using radiotelemetry and measures of renal function and circadian rhythm. RESULTS: SSPer1-/- rats had similar mean arterial pressure when fed a normal 0.4% NaCl diet but developed augmented hypertension after three weeks on a high-salt (4% NaCl) diet. Despite being maintained on a normal 12:12 light:dark cycle, SSPer1-/- rats exhibited desynchrony mean arterial pressure rhythms on a high-salt diet, as evidenced by increased variability in the time of peak mean arterial pressure. SSPer1-/- rats excrete less sodium after three weeks on the high-salt diet. Furthermore, SSPer1-/- rats exhibited decreased creatinine clearance, a measurement of renal function, as well as increased signs of kidney tissue damage. SSPer1-/- rats also exhibited higher plasma aldosterone levels. CONCLUSIONS: Altogether, our findings demonstrate that loss of PER1 in Dahl SS rats causes an array of deleterious effects, including exacerbation of the development of salt-sensitive hypertension and renal damage.


Asunto(s)
Relojes Circadianos , Hipertensión , Enfermedades Renales , Animales , Masculino , Ratas , Presión Sanguínea/fisiología , Relojes Circadianos/genética , Hipertensión/genética , Hipertensión/metabolismo , Riñón/metabolismo , Ratones Noqueados , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ratas Endogámicas Dahl , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/farmacología , Factores de Transcripción/metabolismo
7.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104800

RESUMEN

The reality of life in modern times is that our internal circadian rhythms are often out of alignment with the light/dark cycle of the external environment. This is known as circadian disruption, and a wealth of epidemiological evidence shows that it is associated with an increased risk for cardiovascular disease. Cardiovascular disease remains the top cause of death in the United States, and kidney disease in particular is a tremendous public health burden that contributes to cardiovascular deaths. There is an urgent need for new treatments for kidney disease; circadian rhythm-based therapies may be of potential benefit. The goal of this Review is to summarize the existing data that demonstrate a connection between circadian rhythm disruption and renal impairment in humans. Specifically, we will focus on chronic kidney disease, lupus nephritis, hypertension, and aging. Importantly, the relationship between circadian dysfunction and pathophysiology is thought to be bidirectional. Here we discuss the gaps in our knowledge of the mechanisms underlying circadian dysfunction in diseases of the kidney. Finally, we provide a brief overview of potential circadian rhythm-based interventions that could provide benefit in renal disease.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Ritmo Circadiano , Hipertensión/fisiopatología , Nefritis Lúpica/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Animales , Humanos
8.
Am J Physiol Renal Physiol ; 322(4): F449-F459, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129370

RESUMEN

PERIOD 1 (PER1) is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and Na+ retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in Na+ excretion in response to a high-salt diet plus desoxycorticosterone pivalate treatment (HS + DOCP), a model of salt-sensitive hypertension. In addition, global Per1 KO mice exhibit higher aldosterone levels on a normal-salt diet. To determine the role of Per1 in the kidney, male kidney-specific Per1 KO (KS-Per1 KO) mice were generated using Ksp-cadherin Cre recombinase to remove exons 2-8 of Per1 in the distal nephron and collecting duct. Male KS-Per1 KO mice have increased Na+ retention but have normal diurnal differences in Na+ excretion in response to HS + DOCP. The increased Na+ retention is associated with altered expression of glucocorticoid and mineralocorticoid receptors, increased serum aldosterone, and increased medullary endothelin-1 compared with control mice. Adrenal gland gene expression analysis revealed that circadian clock and aldosterone synthesis genes have altered expression in KS-Per1 KO mice compared with control mice. These results emphasize the importance of the circadian clock not only in maintaining rhythms of physiological functions but also for adaptability in response to environmental cues, such as HS + DOCP, to maintain overall homeostasis. Given the prevalence of salt-sensitive hypertension in the general population, these findings have important implications for our understanding of how circadian clock proteins regulate homeostasis.NEW & NOTEWORTHY For the first time, we show that knockout of the circadian clock transcription factor PERIOD 1 using kidney-specific cadherin Cre results in increased renal Na+ reabsorption, increased aldosterone levels, and changes in gene expression in both the kidney and adrenal gland. Diurnal changes in renal Na+ excretion were not observed, demonstrating that the clock protein PER1 in the kidney is important for maintaining homeostasis and that this effect may be independent of time of day.


Asunto(s)
Aldosterona , Relojes Circadianos , Hipertensión , Riñón , Proteínas Circadianas Period , Aldosterona/sangre , Animales , Cadherinas/metabolismo , Relojes Circadianos/genética , Expresión Génica , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo
9.
Compr Physiol ; 12(1): 2769-2798, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34964116

RESUMEN

Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Sistema Endocrino , Homeostasis , Humanos , Mamíferos
10.
Biophys J ; 120(1): 73-85, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33221249

RESUMEN

Sliding clamps are oligomeric ring-shaped proteins that increase the efficiency of DNA replication. The stability of the Escherichia coli ß-clamp, a homodimer, is particularly remarkable. The dissociation equilibrium constant of the ß-clamp is of the order of 10 pM in buffers of moderate ionic strength. Coulombic electrostatic interactions have been shown to contribute to this remarkable stability. Increasing NaCl concentration in the assay buffer results in decreased dimer stability and faster subunit dissociation kinetics in a way consistent with simple charge-screening models. Here, we examine non-Coulombic ionic effects on the oligomerization properties of sliding clamps. We determined relative diffusion coefficients of two sliding clamps using fluorescence correlation spectroscopy. Replacing NaCl by KGlu, the primary cytoplasmic salt in E. coli, results in a decrease of the diffusion coefficient of these proteins consistent with the formation of protein assemblies. The UV-vis spectrum of the ß-clamp labeled with tetramethylrhodamine shows the characteristic absorption band of dimers of rhodamine when KGlu is present in the buffer. This suggests that KGlu induces the formation of assemblies that involve two or more rings stacked face-to-face. Results can be quantitatively explained on the basis of unfavorable interactions between KGlu and the functional groups on the protein surface, which drive biomolecular processes that bury exposed surface. Similar results were obtained with the Saccharomyces cerevisiae PCNA sliding clamp, suggesting that KGlu effects are not specific to the ß-clamp. Clamp association is also promoted by glycine betaine, a zwitterionic compound that accumulates intracellularly when E. coli is exposed to high concentrations of extracellular solute. Possible biological implications are discussed.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Betaína , Replicación del ADN , Escherichia coli/metabolismo , Ácido Glutámico , Antígeno Nuclear de Célula en Proliferación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA