Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 274
1.
Nat Commun ; 15(1): 2021, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448421

In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.


Malaria, Falciparum , Malaria , Child , Humans , Male , Adolescent , Parasitemia/genetics , Gene Expression Profiling , Malaria, Falciparum/genetics , Cell Movement
2.
bioRxiv ; 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37961701

In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.

3.
mSphere ; 8(5): e0045123, 2023 10 24.
Article En | MEDLINE | ID: mdl-37791774

Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.


Malaria, Falciparum , Malaria , Adult , Child , Humans , Child, Preschool , Endothelial Protein C Receptor/metabolism , Protozoan Proteins/metabolism , Malaria, Falciparum/parasitology , Epitopes , Peptides
4.
Res Sq ; 2023 Jun 26.
Article En | MEDLINE | ID: mdl-37461533

Background: Effective approaches to fight against malaria include disease prevention, an early diagnosis of malaria cases, and rapid management of confirmed cases by treatment with effective antimalarials. Artemisinin-based combination therapies are first-line treatments for uncomplicated malaria in endemic areas. However, cases of resistance to artemisinin have already been described in South-East Asia resulting in prolonged parasite clearance time after treatment. In Mali, though mutations in the K13 gene associated with delayed clearance in Asia are absent, a significant difference in parasite clearance time following treatment with artesunate was observed between two malaria endemic sites, Bougoula-Hameau and Faladje. Hypothetically, differences in complexity of Plasmodium falciparum infections may be accounted for this difference. Hence, the aims of this study were to assess the complexity of infection (COI) and genetic diversity of P. falciparum parasites during malaria treatment in Bougoula-Hameau and Faladje in Mali. Methods: Thirty (30) patients per village were randomly selected from 221 patients enrolled in a prospective artesunate monotherapy study conducted in Faladje and Bougoula-Hameau in 2016. All parasitemic blood samples of patients from enrollment to last positive slide were retained to assess malaria parasite COI and polymorphisms. DNA were extracted with a Qiagen kit and Pfcsp and Pfama1 encoding gene were amplified by nested PCR and sequenced using the Illumina platform. The parasite clearance time (PCT) was determined using the parasite clearance estimator of Worldwide Antimarial Resistance Network (WWARN). Data were analyzed with R®. Results: The median number of genetically distinct parasite clones was similar at enrollment, 7 (IQR of 5-9) in Faladje and 6 (IQR of 4-10) in Bougoula-Hameau (p-value = 0.1). On the first day after treatment initiation, the COI was higher in Faladje (6; CI:4-8) than in Bougoula-Hameau (4; CI:4-6) with a p-value =0. 02. Overall, COI was high with higher PCT. Finally, there was a low genetic diversity between Faladje and Bougoula-Hameau. Conclusion: This study demonstrated that the difference in PCT observed between the two villages could be due to differences in the complexity of infection of these two villages.

5.
Lancet Infect Dis ; 23(11): 1266-1279, 2023 11.
Article En | MEDLINE | ID: mdl-37499679

BACKGROUND: Malaria transmission-blocking vaccines target mosquito-stage parasites and will support elimination programmes. Gamete vaccine Pfs230D1-EPA/Alhydrogel induced superior activity to zygote vaccine Pfs25-EPA/Alhydrogel in malaria-naive US adults. Here, we compared these vaccines in malaria-experienced Malians. METHODS: We did a pilot safety study then double-blind, block-randomised, comparator-controlled main-phase trial in malaria-intense Bancoumana, Mali. 18-50-year-old healthy non-pregnant, non-breastfeeding consenting adult residents were randomly assigned (1:1:1:1) to receive four doses at months 0, 1, 4·5, and 16·5 of either 47 µg Pfs25, 40 µg Pfs230D1 or comparator (Twinrix or Menactra)-all co-administered with normal saline for blinding-or 47 µg Pfs25 plus 40 µg Pfs230D1 co-administered. We documented safety and tolerability (primary endpoint in the as-treated populations) and immunogenicity (secondary endpoint in the as-treated populations: ELISA, standard-membrane-feeding assay, and mosquito direct skin feed assay). This trial is registered at ClinicalTrials.gov, NCT02334462. FINDINGS: Between March 19, and June 2, 2015, we screened 471 individuals. Of 225 enrolled for the pilot and main cohorts, we randomly assigned 25 participants to pilot safety cohort groups of five (20%) to receive a two-dose series of Pfs25-EPA/Alhydrogel (16 µg), Pfs230D1-EPA/Alhydrogel (15 µg) or comparator, followed by Pfs25-EPA/Alhydrogel (16 µg) plus Pfs230D1-EPA/Alhydrogel (15 µg) or comparator plus saline. For the main cohort, we enrolled 200 participants between May 11 and June 2, 2015, to receive a four-dose series of 47 µg Pfs25-EPA/Alhydrogel plus saline (n=50 [25%]; Pfs25), 40 µg Pfs230D1-EPA/Alhydrogel plus saline (n=49 [25%]; Pfs230D1), 47 µg Pfs25-EPA/Alhydrogel plus 40 µg Pfs230D1-EPA/Alhydrogel (n=50 [25%]; Pfs25 plus Pfs230D1), or comparator (Twinrix or Menactra) plus saline (n=51 [25%]). Vaccinations were well tolerated in the pilot safety and main phases. Most vaccinees became seropositive after two Pfs230D1 or three Pfs25 doses; peak titres increased with each dose thereafter (Pfs230D1 geometric mean: 77·8 [95% CI 56·9-106·3], 146·4 [108·3-198·0], and 410·2 [301·6-558·0]; Pfs25 geometric mean 177·7 [130·3-242·4] and 315·7 [209·9-474·6]). Functional activity (mean peak transmission-reducing activity) appeared for Pfs230D1 (74·5% [66·6-82·5]) and Pfs25 plus Pfs230D1 (68·6% [57·3-79·8]), after the third dose and after the fourth dose (88·9% [81·7-96·2] for Pfs230D1 and 85·0% [78·4-91·5] Pfs25 plus Pfs230D1) but not for Pfs25 (58·2% [49·1-67·3] after the third dose and 58·2% [48·5-67·9] after the fourth dose). Pfs230D1 transmission-reducing activity (73·7% [64·1-83·3]) persisted 10 weeks after the fourth dose. Transmission-reducing activity of 80% was estimated at 1659 ELISA units for Pfs25, 218 for Pfs230D1, and 223 for Pfs230D1 plus Pfs25. After 3850 direct skin feed assays, 35 participants (12 Pfs25, eight Pfs230D1, five Pfs25 plus Pfs230D1, and ten comparator) had transmitted parasites at least once. The proportion of positive assays in vaccine groups (Pfs25 33 [3%] of 982 [-0·013 to 0·014], Pfs230D1 22 [2%] of 954 [-0·005 to 0·027], and combination 11 [1%] of 940 [-0·024 to 0·002]) did not differ from that of the comparator (22 [2%] of 974), nor did Pfs230D1 and combination groups differ (-0·024 to 0·001). INTERPRETATION: Pfs230D1 but not Pfs25 vaccine induces durable serum functional activity in Malian adults. Direct skin feed assays detect parasite transmission to mosquitoes but increased event rates are needed to assess vaccine effectiveness. FUNDING: Intramural Research Program of the National Institute of Allergy and Infectious Diseases and US National Institutes of Health.


Malaria Vaccines , Malaria, Falciparum , Meningococcal Vaccines , Animals , Adult , Humans , Adolescent , Young Adult , Middle Aged , Aluminum Hydroxide , Plasmodium falciparum , Malaria Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine
6.
Front Immunol ; 14: 1179314, 2023.
Article En | MEDLINE | ID: mdl-37465667

Introduction: Host gene and protein expression impact susceptibility to clinical malaria, but the balance of immune cell populations, cytokines and genes that contributes to protection, remains incompletely understood. Little is known about the determinants of host susceptibility to clinical malaria at a time when acquired immunity is developing. Methods: We analyzed peripheral blood mononuclear cells (PBMCs) collected from children who differed in susceptibility to clinical malaria, all from a small town in Mali. PBMCs were collected from children aged 4-6 years at the start, peak and end of the malaria season. We characterized the immune cell composition and cytokine secretion for a subset of 20 children per timepoint (10 children with no symptomatic malaria age-matched to 10 children with >2 symptomatic malarial illnesses), and gene expression patterns for six children (three per cohort) per timepoint. Results: We observed differences between the two groups of children in the expression of genes related to cell death and inflammation; in particular, inflammatory genes such as CXCL10 and STAT1 and apoptotic genes such as XAF1 were upregulated in susceptible children before the transmission season began. We also noted higher frequency of HLA-DR+ CD4 T cells in protected children during the peak of the malaria season and comparable levels cytokine secretion after stimulation with malaria schizonts across all three time points. Conclusion: This study highlights the importance of baseline immune signatures in determining disease outcome. Our data suggests that differences in apoptotic and inflammatory gene expression patterns can serve as predictive markers of susceptibility to clinical malaria.


Malaria, Falciparum , Malaria , Child , Humans , Leukocytes, Mononuclear , Malaria/genetics , Cytokines , Adaptive Immunity
8.
Cytokine ; 164: 156137, 2023 04.
Article En | MEDLINE | ID: mdl-36773528

Host immunity has been suggested to clear drug-resistant parasites in malaria-endemic settings. However, the immunogenetic mechanisms involved in parasite clearance are poorly understood. Characterizing the host's immunity and genes involved in controlling the parasitic infection can inform the development of blood-stage malaria vaccines. This study investigates host regulatory cytokines and immunogenomic factors associated with the clearance of Plasmodium falciparum carrying a chloroquine resistance genotype. Biological samples from participants of previous drug efficacy trials conducted in two Malian localities were retrieved. The P. falciparum chloroquine resistance transporter (Pfcrt) gene was genotyped using parasite DNA. Children carrying parasites with the mutant allele (Pfcrt-76T) were classified based on their ability to clear their parasites. The levels of the different cytokines were measured in serum. The polymorphisms of specific human genes involved in malaria susceptibility were genotyped using human DNA. The prevalence of the Pfcrt-76T was significantly higher in Kolle than in Bandiagara (81.6 % vs 38.6 %, p < 10-6). The prevalence of children who cleared their mutant parasites was significantly higher in Bandiagara than in Kolle (82.2 % vs 67.4 %, p < 0.05). The genotyping of host genes revealed that IFN-γ -874 T and TNF-α -308A alleles were positively associated with parasite clearance. Cytokine profiling revealed that IFN-γ level was positively associated with parasite clearance (p = 0.04). This study highlights the role of host's immunity and immunogenetic factors to clear resistant parasites, suggesting further characterization of these polymorphisms may help to develop novel approaches to antiparasitic treatment strategies.


Antimalarials , Malaria, Falciparum , Malaria , Humans , Child , Antimalarials/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/therapeutic use , Drug Resistance/genetics , Protozoan Proteins/genetics , Chloroquine/pharmacology , Malaria, Falciparum/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/therapeutic use , Malaria/drug therapy
9.
PLoS Negl Trop Dis ; 17(1): e0010802, 2023 01.
Article En | MEDLINE | ID: mdl-36696438

Plasmodium parasites caused 241 million cases of malaria and over 600,000 deaths in 2020. Both P. falciparum and P. ovale are endemic to Mali and cause clinical malaria, with P. falciparum infections typically being more severe. Here, we sequenced RNA from nine pediatric blood samples collected during infections with either P. falciparum or P. ovale, and characterized the host and parasite gene expression profiles. We found that human gene expression varies more between individuals than according to the parasite species causing the infection, while parasite gene expression profiles cluster by species. Additionally, we characterized DNA polymorphisms of the parasites directly from the RNA-seq reads and found comparable levels of genetic diversity in both species, despite dramatic differences in prevalence. Our results provide unique insights into host-pathogen interactions during malaria infections and their variations according to the infecting Plasmodium species, which will be critical to develop better elimination strategies against all human Plasmodium parasites.


Malaria, Falciparum , Malaria , Transcriptome , Child , Humans , Malaria/epidemiology , Malaria/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Plasmodium falciparum , Plasmodium ovale
10.
Front Neurol ; 13: 988960, 2022.
Article En | MEDLINE | ID: mdl-36523346

A decrease in malaria incidence following implementation of control strategies such as use of artemisinin-based combination therapies, insecticide-impregnated nets, intermittent preventive treatment during pregnancy and seasonal malaria chemoprevention (SMC) has been observed in many parts of Africa. We hypothesized that changes in malaria incidence is accompanied by a change in the predominant clinical phenotypes of severe malaria. To test our hypothesis, we used data from a severe malaria case-control study that lasted from 2014-2019 to describe clinical phenotypes of severe forms experienced by participants enrolled in Bandiagara, Bamako, and Sikasso, in Mali. We also analyzed data from hospital records of inpatient children at a national referral hospital in Bamako. Among 97 cases of severe malaria in the case-control study, there was a predominance of severe malarial anemia (49.1%). The frequency of cerebral malaria was 35.4, and 16.5% of cases had a mixed clinical phenotype (concurrent cerebral malaria and severe anemia). National referral hospital record data in 2013-15 showed 24.3% of cases had severe malarial anemia compared to 51.7% with cerebral malaria. In the years after SMC scale-up, severe malarial anemia cases increased to 30.1%, (P = 0.019), whereas cerebral malaria cases decreased to 45.5% (P = 0.025). In addition, the predominant age group for each severe malaria phenotype was the 0-1-year-olds. The decrease in malaria incidence noted with the implementation of control strategies may be associated with a change in the clinical expression patterns of severe malaria, including a potential shift in severe malaria burden to age groups not receiving seasonal malaria chemoprevention.

11.
PLoS Pathog ; 18(9): e1010312, 2022 09.
Article En | MEDLINE | ID: mdl-36121873

Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.


Inflammatory Bowel Diseases , Leprosy , Humans , Child , Genome-Wide Association Study , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Malawi , Mali , Leprosy/genetics , Nucleoside Transport Proteins/genetics
12.
EClinicalMedicine ; 52: 101579, 2022 Oct.
Article En | MEDLINE | ID: mdl-35928033

Background: Plasmodium falciparum (Pf) Sporozoite (SPZ) Chemoprophylaxis Vaccine (PfSPZ-CVac) involves concurrently administering infectious PfSPZ and malaria drug, often chloroquine (CQ), to kill liver-emerging parasites. PfSPZ-CVac (CQ) protected 100% of malaria-naïve participants against controlled human malaria infection. We investigated the hypothesis that PfSPZ-CVac (CQ) is safe and efficacious against seasonal, endemic Pf in malaria-exposed adults. Methods: Healthy 18-45 year olds were enrolled in a double-blind, placebo-controlled trial in Bougoula-Hameau, Mali, randomized 1:1 to 2.048 × 105 PfSPZ (PfSPZ Challenge) or normal saline administered by direct venous inoculation at 0, 4, 8 weeks. Syringes were prepared by pharmacy staff using online computer-based enrolment that randomized allocations. Clinical team and participant masking was assured by identical appearance of vaccine and placebo. Participants received chloroquine 600mg before first vaccination, 10 weekly 300mg doses during vaccination, then seven daily doses of artesunate 200mg before 24-week surveillance during the rainy season. Safety outcomes were solicited adverse events (AEs) and related unsolicited AEs within 12 days of injections, and all serious AEs. Pf infection was detected by thick blood smears performed every four weeks and during febrile illness over 48 weeks. Primary vaccine efficacy (VE) endpoint was time to infection at 24 weeks. NCT02996695. Findings: 62 participants were enrolled in April/May 2017. Proportions of participants experiencing at least one solicited systemic AE were similar between treatment arms: 6/31 (19.4%, 95%CI 9.2-36.3) of PfSPZ-CVac recipients versus 7/31 (22.6%, 95%CI 29.2-62.2) of controls (p value = 1.000). Two/31 (6%) in each group reported related, unsolicited AEs. One unrelated death occurred. Of 59 receiving 3 immunizations per protocol, fewer vaccinees (16/29, 55.2%) became infected than controls (22/30, 73.3%). VE was 33.6% by hazard ratio (p = 0.21, 95%CI -27·9, 65·5) and 24.8% by risk ratio (p = 0.10, 95%CI -4·8, 54·3). Antibody responses to PfCSP were poor; 28% of vaccinees sero-converted. Interpretation: PfSPZ-CVac (CQ) was well-tolerated. The tested dosing regimen failed to significantly protect against Pf infection in this very high transmission setting. Funding: U.S. National Institutes of Health, Sanaria. Registration number: ClinicalTrials.gov identifier (NCT number): NCT02996695.

13.
Am J Trop Med Hyg ; 107(4): 796-803, 2022 10 12.
Article En | MEDLINE | ID: mdl-35995135

Intermittent preventive treatment of malaria among schoolchildren (IPTsc) reduces clinical malaria, asymptomatic parasitemia, and anemia. The effects of IPTsc by gender have not been studied longitudinally. We investigated overall IPTsc efficacy and conducted a secondary analysis to explore gender-specific differences. We enrolled schoolchildren aged 6-13 years in an open-label, rolling-cohort randomized controlled trial between September 2007 and February 2013 in Kolle, Mali. Annually, schoolchildren received two full-treatment courses of sulfadoxine-pyrimethamine (SP) plus artesunate, or amodiaquine (AQ) plus artesunate, or no malaria treatment as control. We used mixed-effects generalized linear models to estimate differences in treatment outcomes across groups with interaction terms to explore gender-specific differences associated with Plasmodium falciparum infection, hemoglobin, and grade point averages (GPA) based on standardized testing. Overall, 305 students contributed 4,564 observations. Compared with the control, SP plus artesunate and AQ plus artesunate reduced the odds of P. falciparum infection (odds ratio [OR]: 0.33, 95% CI: 0.26-0.43; OR: 0.46, 95% CI: 0.36-0.59). We found strong evidence of increased mean hemoglobin concentrations (g/dL) in the SP plus artesunate group versus control (difference +0.37, 95% CI: 0.13-0.58). Collectively, schoolchildren given AQ plus artesunate had higher mean GPA (difference +0.36, 95% CI: 0.02-0.69) relative to control. Schoolgirls, compared with schoolboys, given SP plus artesunate had greater improvement in GPA (+0.50, 95% CI: -0.02 to 1.02 versus -0.27, 95% CI: -0.71 to 0.16); interaction P = 0.048, respectively. The IPTsc decreases P. falciparum infections in schoolchildren. Treatment regimens that include longer-acting drugs may be more effective at decreasing malaria-related anemia and improving educational outcomes as observed among girls in this setting.


Anemia , Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Amodiaquine/therapeutic use , Anemia/drug therapy , Anemia/prevention & control , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Artesunate/therapeutic use , Child , Drug Combinations , Drug Therapy, Combination , Female , Hemoglobins , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Mali/epidemiology , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use
14.
Am J Trop Med Hyg ; 107(2): 315-319, 2022 08 17.
Article En | MEDLINE | ID: mdl-35895583

We used a protein microarray featuring Plasmodium falciparum field variants of a merozoite surface antigen to examine malaria exposure in Malian children with different severe malaria syndromes. Unlike children with cerebral malaria alone or severe malarial anemia alone, those with concurrent cerebral malaria and severe malarial anemia had serologic responses demonstrating a broader prior parasite exposure pattern than matched controls with uncomplicated disease. Comparison of levels of malaria-related cytokines revealed that children with the concurrent phenotype had elevated levels of interleukin (IL)-6, IL-8, and IL-10. Our results suggest that the pathophysiology of this severe subtype is unique and merits further investigation.


Anemia , Malaria, Cerebral , Malaria, Falciparum , Humans , Malaria, Cerebral/complications , Plasmodium falciparum , Cytokines , Anemia/etiology , Interleukin-6
16.
Am J Trop Med Hyg ; 2022 Feb 28.
Article En | MEDLINE | ID: mdl-35226874

Throughout a phase IIIb/IV efficacy study of repeated treatment with four artemisinin-based combination therapies, significant heterogeneity was found in the number of clinical episodes experienced by individuals during the 2-year follow-up. Several factors, including host, parasite, and environmental factors, may contribute to the differential malaria incidence. We aimed to identify risk factors of malaria incidence in the context of a longitudinal study of the efficacy of different artemisinin-based combination therapy regimens in Bougoula-Hameau, a high-transmission setting in Mali. Risk factors including age, residence, and treatment regimen were compared among individuals experiencing eight or more clinical episodes of malaria ("high-incidence group") and individuals experiencing up to three clinical episodes ("low-incidence group"). Consistent with the known association between age and malaria risk in high-transmission settings, individuals in the high incidence group were significantly younger than individuals in the low-risk group (mean age, 7.0 years versus 10.6 years, respectively; t-test, P < 0.0001). Compared with individuals receiving artemether-lumefantrine, those receiving artesunate-amodiaquine had greater odds of being in the high-incidence group (odds ratio [OR], 2.24; 95% CI, 1.03 - 4.83, P = 0.041), while individuals receiving dihydroartemisinin-piperaquine had a lower odds of being in high incidence group (OR: 0.30, 95% CI, 0.11-0.85; P = 0.024). Individuals residing in the forested areas of Sokourani and Karamogobougou had significantly greater odds of being in the high-incidence group compared with individuals residing in the semi-urban area of Bougoula-Hameau 1 (Karamogobougou: OR, 3.68; 95% CI, 1.46-9.31; P = 0.0059; Sokourani: OR, 11.46; 95% CI, 4.49-29.2; P < 0.0001). This study highlights the importance of fine-mapping malaria risks even at sub-district levels for targeted and customized interventions.

17.
mSystems ; 6(6): e0022621, 2021 Dec 21.
Article En | MEDLINE | ID: mdl-34846163

var genes encode Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens. These highly diverse antigens are displayed on the surface of infected erythrocytes and play a critical role in immune evasion and sequestration of infected erythrocytes. Studies of var expression using non-leukocyte-depleted blood are challenging because of the predominance of host genetic material and lack of conserved var segments. Our goal was to enrich for parasite RNA, allowing de novo assembly of var genes and detection of expressed novel variants. We used two overall approaches: (i) enriching for total mRNA in the sequencing library preparations and (ii) enriching for parasite RNA with a custom capture array based on Roche's SeqCap EZ enrichment system. The capture array was designed with probes based on the whole 3D7 reference genome and an additional >4,000 full-length var gene sequences from other P. falciparum strains. We tested each method on RNA samples from Malian children with severe or uncomplicated malaria infections. All reads mapping to the human genome were removed, the remaining reads were assembled de novo into transcripts, and from these, var-like transcripts were identified and annotated. The capture array produced the longest maximum length and largest numbers of var gene transcripts in each sample, particularly in samples with low parasitemia. Identifying the most-expressed var gene sequences in whole-blood clinical samples without the need for extensive processing or generating sample-specific reference genome data is critical for understanding the role of PfEMP1s in malaria pathogenesis. IMPORTANCE Malaria parasites display antigens on the surface of infected red blood cells in the human host that facilitate attachment to blood vessels, contributing to the severity of infection. These antigens are highly variable, allowing the parasite to evade the immune system. Identifying these expressed antigens is critical to understanding the development of severe malarial disease. However, clinical samples contain limited amounts of parasite genetic material, a challenge for sequencing efforts further compounded by the extreme diversity of the parasite surface antigens. We present a method that enriches for these antigen sequences in clinical samples using a custom capture array, requiring minimal processing in the field. While our results are focused on the malaria parasite Plasmodium falciparum, this approach has broad applicability to other highly diverse antigens from other parasites and pathogens such as those that cause giardiasis and leishmaniasis.

18.
Nat Commun ; 12(1): 6735, 2021 11 18.
Article En | MEDLINE | ID: mdl-34795213

Serological surveys are essential to quantify immunity in a population but serological cross-reactivity often impairs estimates of the seroprevalence. Here, we show that modeling helps addressing this key challenge by considering the important cross-reactivity between Chikungunya (CHIKV) and O'nyong-nyong virus (ONNV) as a case study. We develop a statistical model to assess the epidemiology of these viruses in Mali. We additionally calibrate the model with paired virus neutralization titers in the French West Indies, a region with known CHIKV circulation but no ONNV. In Mali, the model estimate of ONNV and CHIKV prevalence is 30% and 13%, respectively, versus 27% and 2% in non-adjusted estimates. While a CHIKV infection induces an ONNV response in 80% of cases, an ONNV infection leads to a cross-reactive CHIKV response in only 22% of cases. Our study shows the importance of conducting serological assays on multiple cross-reactive pathogens to estimate levels of virus circulation.


Algorithms , Chikungunya Fever/immunology , Chikungunya virus/immunology , Cross Reactions/immunology , Models, Statistical , O'nyong-nyong Virus/immunology , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Chikungunya virus/physiology , Humans , Mali/epidemiology , Martinique/epidemiology , O'nyong-nyong Virus/physiology , Reproducibility of Results , Sensitivity and Specificity , Seroepidemiologic Studies
19.
NPJ Vaccines ; 6(1): 115, 2021 Sep 13.
Article En | MEDLINE | ID: mdl-34518543

Knowledge of the Plasmodium falciparum antigens that comprise the human liver stage immunoproteome is important for pre-erythrocytic vaccine development, but, compared with the erythrocytic stage immunoproteome, more challenging to classify. Previous studies of P. falciparum antibody responses report IgG and rarely IgA responses. We assessed IgG and IgA antibody responses in adult sera collected during two controlled human malaria infection (CHMI) studies in malaria-naïve volunteers and in 1- to 6-year-old malaria-exposed Malian children on a 251 P. falciparum antigen protein microarray. IgG profiles in the two CHMI groups were equivalent and differed from Malian children. IgA profiles were robust in the CHMI groups and a subset of Malian children. We describe immunoproteome differences in naïve vs. exposed individuals and report pre-erythrocytic proteins recognized by the immune system. IgA responses detected in this study expand the list of pre-erythrocytic antigens for further characterization as potential vaccine candidates.

20.
Sci Rep ; 11(1): 14401, 2021 07 13.
Article En | MEDLINE | ID: mdl-34257318

Plasmodium falciparum erythrocyte membrane protein-1s (PfEMP1s), diverse malaria proteins expressed on the infected erythrocyte surface, play an important role in pathogenesis, mediating adhesion to host vascular endothelium. Antibodies to particular non-CD36-binding PfEMP1s are associated with protection against severe disease. We hypothesized that given lifelong P. falciparum exposure, Malian adults would have broad PfEMP1 serorecognition and high seroreactivity levels during follow-up, particularly to non-CD36-binding PfEMP1s such as those that attach to endothelial protein C receptor (EPCR) and intercellular adhesion molecule-1 (ICAM-1). Using a protein microarray, we determined serologic responses to 166 reference PfEMP1 fragments during a dry and subsequent malaria transmission season in Malian adults. Malian adult sera had PfEMP1 serologic responses throughout the year, with decreased reactivity to a small subset of PfEMP1 fragments during the dry season and increases in reactivity to a different subset of PfEMP1 fragments during the subsequent peak malaria transmission season, especially for intracellular PfEMP1 domains. For some individuals, PfEMP1 serologic responses increased after the dry season, suggesting antigenic switching during asymptomatic infection. Adults were more likely to experience variable serorecognition of CD36-binding PfEMP1s than non-CD36-binding PfEMP1s that bind EPCR or ICAM-1, which remained serorecognized throughout the year. Sustained seroreactivity to non-CD36-binding PfEMP1s throughout adulthood amid seasonal fluctuation patterns may reflect underlying protective severe malaria immunity and merits further investigation.


Plasmodium falciparum , Seasons , Adult , Erythrocyte Membrane/metabolism , Humans , Protozoan Proteins/metabolism
...