Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Environ Pollut ; 349: 123907, 2024 May 15.
Article En | MEDLINE | ID: mdl-38582185

Although lead (Pb) poisoning in wild birds has been considered a serious problem in Japan for over 30 years, there is little information about Pb exposure and its sources throughout Japan except for Hokkaido. Furthermore, to identify and effectively prioritize the conservation needs of highly vulnerable species, differences in sensitivity to Pb exposure among avian species need to be determined. Therefore, we investigated the current situation of Pb exposure in raptors (13 species, N = 82), waterfowl (eight species, N = 44) and crows (one species, N = 6) using concentration and isotope analysis. We employed blood or tissue samples collected in various Japanese facilities mainly in 2022 or 2023. We also carried out a comparative study of blood δ-ALAD sensitivity to in vitro Pb exposure using blood of nine avian species. Pb concentrations in the blood or tissues displayed increased levels (>0.1 µg/g blood) in two raptors (2.4%), ten waterfowl (23%) and one crow (17%). Among them, poisoning levels (>0.6 µg/g blood) were found in one black kite and one common teal. The sources of Pb isotope ratios in ten blood samples with high Pb levels were determined as deriving from shot pellets (N = 9) or rifle bullets (N = 1). In the δ-ALAD study, red-crowned crane showed the highest sensitivity among the nine tested avian species and was followed in order by five Accipitriformes species (including white-tailed and Steller's sea eagle), Blakiston's fish owl, Muscovy duck and chicken, suggesting a genetically driven variance in susceptibility. Further studies on contamination conditions and exposure sources are urgently needed to inform strict regulations on the usage of Pb ammunition. Furthermore, detailed examinations of δ-ALAD sensitivity, interspecific differences, and other factors involved in the variability in sensitivity to Pb are required to identify and prioritize highly sensitive species.


Birds , Environmental Pollutants , Lead , Raptors , Animals , Lead/blood , Lead/metabolism , Japan , Raptors/metabolism , Environmental Pollutants/blood , Birds/metabolism , Environmental Monitoring/methods , Lead Poisoning/veterinary , Environmental Exposure/statistics & numerical data , Crows
2.
Environ Sci Technol ; 54(22): 14474-14481, 2020 11 17.
Article En | MEDLINE | ID: mdl-32490671

We investigated the potential effects of different land use and other environmental factors on animals living in a contaminated environment. The study site in Kabwe, Zambia, is currently undergoing urban expansion, while lead contamination from former mining activities is still prevalent. We focused on a habitat generalist lizards (Trachylepis wahlbergii). The livers, lungs, blood, and stomach contents of 224 lizards were analyzed for their lead, zinc, cadmium, copper, nickel, and arsenic concentrations. Habitat types were categorized based on vegetation data obtained from satellite images. Multiple regression analysis revealed that land use categories of habitats and three other factors significantly affected lead concentrations in the lizards. Further investigation suggested that the lead concentrations in lizards living in bare fields were higher than expected based on the distance from the contaminant source, while those in lizards living in green fields were lower than expected. In addition, the lead concentration of lungs was higher than that of the liver in 19% of the lizards, implying direct exposure to lead via dust inhalation besides digestive exposure. Since vegetation reduces the production of dust from surface soil, it is plausible that dust from the mine is one of the contamination sources and that vegetation can reduce exposure to this.


Lizards , Soil Pollutants , Animals , Ecosystem , Environmental Monitoring , Lead/analysis , Mining , Soil Pollutants/analysis
...