Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411713, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298292

RESUMEN

Bioorthogonal reactions that enable switching molecular functions by breaking chemical bonds have gained prominence, with the tetrazine-mediated cleavage of trans-cyclooctene caged compounds (click-to-release) being particularly noteworthy for its high versatility, biocompatibility, and fast reaction rates. Despite several recent advances, the development of highly reactive tetrazines enabling quantitative elimination from trans-cyclooctene linkers remains challenging. In this study, we present the synthesis and application of sulfo-tetrazines, a class of derivatives featuring phenolic hydroxyl groups with increased acidity constants (pKa). This unique property leads to accelerated elimination and complete release of the caged molecules within minutes. Moreover, the inclusion of sulfonate groups provides a valuable synthetic handle, enabling further derivatization into sulfonamides, modified with diverse substituents. Significantly, we demonstrate the utility of sulfo-tetrazines in efficiently activating fluorogenic compounds and prodrugs in living cells, offering exciting prospects for their application in bioorthogonal chemistry.

2.
J Org Chem ; 89(17): 11875-11890, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39178339

RESUMEN

N-Acetyllactosamine is a common saccharide motif found in various biologically active glycans. This motif usually works as a backbone for additional modifications and thus significantly influences glycan conformational behavior and biological activity. In this work, we have investigated the type-2 N-acetyllactosamine scaffold using the complete series of its monodeoxyfluorinated analogs. These glycomimetics have been studied by molecular mechanics, quantum mechanics, X-ray crystallography, and various NMR techniques, which have provided a comprehensive and complete insight into the role of individual hydroxyl groups in the conformational behavior and lipophilicity of N-acetyllactosamine.


Asunto(s)
Amino Azúcares , Amino Azúcares/química , Estructura Molecular , Cristalografía por Rayos X , Halogenación , Modelos Moleculares , Espectroscopía de Resonancia Magnética , Teoría Cuántica , Conformación Molecular
3.
Chemistry ; : e202402946, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39176441

RESUMEN

This study investigates the hydrogen-bond geometry in six two-component solid systems composed of quinoline and chloro-nitrobenzoic acids. New X-ray diffraction studies were conducted using both the conventional independent-atom model and the more recent Hirshfeld atom-refinement method, with the latter providing precise hydrogen-atom positions. The systems can be divided into salts (the hydrogen atom transferred to the quinoline nitrogen), cocrystals (the hydrogen atom retained by the acid), and intermediate structures. Solid-state NMR experiments corroborated the X-ray diffraction-derived H-N distances. DFT calculations, using five functionals including hybrid B3LYP and PBE0, showed varying energy profiles for the hydrogen bonds, with notable differences across functionals. These calculations revealed different preferences for salt or cocrystal structures, depending on the functional used. Path-integral molecular dynamics simulations incorporating nuclear quantum effects demonstrated significant hydrogen-atom delocalization, forming a hydrogen-bond continuum, and provided average N-H distances in excellent agreement with experimental results. This comprehensive experimental and theoretical approach highlights the complexity of multicomponent solids. The study emphasizes that the classification into salts or cocrystals is frequently inadequate, as the hydrogen atom is often significantly delocalized in the hydrogen bond. This insight is crucial for understanding and predicting the behavior of such systems in pharmaceutical applications.

4.
Angew Chem Int Ed Engl ; : e202409520, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058684

RESUMEN

Perfusion dynamics play a vital role in delivering essential nutrients and oxygen to tissues while removing metabolic waste products. Imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) use contrast agents to visualize perfusion and clearance patterns; however, each technique has specific limitations. Hybrid PET/MRI combines the quantitative power and sensitivity of PET with the high functional and anatomical detail of MRI and holds great promise for precision in molecular imaging. However, the development of dual PET/MRI probes has been hampered by challenging synthesis and radiolabeling. Here, we present a novel PET/MRI probe, [18F][Gd(FL1)], which exhibits excellent stability comparable to macrocyclic MRI contrast agents used in clinical practice. The unique molecular design of [18F][Gd(FL1)] allows selective and expeditious radiolabeling of the gadolinium chelate in the final synthetic step. Leveraging the strengths of MRI and PET signals, the probe enables quantitative in vivo mapping of perfusion and excretion dynamics through an innovative voxel-based analysis. The diagnostic capabilities of [18F][Gd(FL1)] were demonstrated in a pilot study on healthy mice, successfully detecting early cases of unilateral renal dysfunction. This study introduces a new approach for PET/MRI and emphasizes a streamlined probe design for improved diagnostic accuracy.

5.
J Med Chem ; 67(12): 10135-10151, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38857067

RESUMEN

Yohimbine, a natural indole alkaloid and a nonselective adrenoceptor antagonist, possesses potential benefits in treating inflammatory disorders and sepsis. Nevertheless, its broader clinical use faces challenges due to its low receptor selectivity. A structure-activity relationship study of novel yohimbine analogues identified amino esters of yohimbic acid as potent and selective ADRA2A antagonists. Specifically, amino ester 4n, in comparison to yohimbine, showed a 6-fold higher ADRA1A/ADRA2A selectivity index (SI > 556 for 4n) and a 25-fold higher ADRA2B/ADRA2A selectivity index. Compound 4n also demonstrated high plasma and microsomal stability, moderate-to-low membrane permeability determining its limited ability to cross the blood-brain barrier, and negligible toxicity on nontumor normal human dermal fibroblasts. Compound 4n represents an important complementary pharmacological tool to study the involvement of adrenoceptor subtypes in pathophysiologic conditions such as inflammation and sepsis and a novel candidate for further preclinical development to treat ADRA2A-mediated pathologies.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2 , Diseño de Fármacos , Receptores Adrenérgicos alfa 2 , Yohimbina , Humanos , Receptores Adrenérgicos alfa 2/metabolismo , Yohimbina/farmacología , Yohimbina/química , Relación Estructura-Actividad , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/química , Antagonistas de Receptores Adrenérgicos alfa 2/síntesis química , Animales
6.
Bioorg Chem ; 147: 107395, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705105

RESUMEN

Fluorination of carbohydrate ligands of lectins is a useful approach to examine their binding profile, improve their metabolic stability and lipophilicity, and convert them into 19F NMR-active probes. However, monofluorination of monovalent carbohydrate ligands often leads to a decreased or completely lost affinity. By chemical glycosylation, we synthesized the full series of methyl ß-glycosides of N,N'-diacetylchitobiose (GlcNAcß(1-4)GlcNAcß1-OMe) and LacdiNAc (GalNAcß(1-4)GlcNAcß1-OMe) systematically monofluorinated at all hydroxyl positions. A competitive enzyme-linked lectin assay revealed that the fluorination at the 6'-position of chitobioside resulted in an unprecedented increase in affinity to wheat germ agglutinin (WGA) by one order of magnitude. For the first time, we have characterized the binding profile of a previously underexplored WGA ligand LacdiNAc. Surprisingly, 4'-fluoro-LacdiNAc bound WGA even stronger than unmodified LacdiNAc. These observations were interpreted using molecular dynamic calculations along with STD and transferred NOESY NMR techniques, which gave evidence for the strengthening of CH/π interactions after deoxyfluorination of the side chain of the non-reducing GlcNAc. These results highlight the potential of fluorinated glycomimetics as high-affinity ligands of lectins and 19F NMR-active probes.


Asunto(s)
Disacáridos , Aglutininas del Germen de Trigo , Disacáridos/química , Disacáridos/síntesis química , Aglutininas del Germen de Trigo/química , Aglutininas del Germen de Trigo/metabolismo , Halogenación , Estructura Molecular , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Lactosa/análogos & derivados
7.
Bioorg Chem ; 147: 107388, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678775

RESUMEN

In this study, we investigated the potential of long-range fluorine-carbon J-coupling for determining the structures of deoxyfluorinated disaccharides. Three disaccharides, previously synthesized as potential galectin inhibitors, exhibited through-space fluorine-carbon J-couplings. In our independent conformational analysis of these disaccharide derivatives, we employed a combination of density functional theory (DFT) calculations and nuclear magnetic resonance (NMR) experiments. By comparing the calculated nuclear shieldings with the experimental carbon chemical shifts, we were able to identify the most probable conformers for each compound. A model comprising fluoromethane and methane molecules was used to study the relationship between molecular arrangements and intermolecular through-space J-coupling. Our study demonstrates the important effect of internuclear distance and molecular orientation on the magnitude of fluorine-carbon coupling. The experimental values for the fluorine-carbon through-space couplings (TSCs) of the disaccharides corresponded with values calculated for the most probable conformers identified by the conformational analysis. These results unlock the broader application of fluorine-carbon TSCs as powerful tools for conformational analysis of flexible molecules, offering valuable insights for future structural investigations.


Asunto(s)
Teoría Funcional de la Densidad , Disacáridos , Flúor , Espectroscopía de Resonancia Magnética , Flúor/química , Disacáridos/química , Carbono/química , Conformación de Carbohidratos , Conformación Molecular
8.
Angew Chem Int Ed Engl ; 63(20): e202403218, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38497312

RESUMEN

The generally observed decrease of the electrostatic energy in the complex with increasing solvent polarity has led to the assumption that the stability of the complexes with ion-pair hydrogen bonds decreases with increasing solvent polarity. Besides, the smaller solvent-accessible surface area (SASA) of the complex in comparison with the isolated subsystems results in a smaller solvation energy of the latter, leading to a destabilization of the complex in the solvent compared to the gas phase. In our study, which combines Nuclear Magnetic Resonance, Infrared Spectroscopy experiments, quantum chemical calculations, and molecular dynamics (MD) simulations, we question the general validity of this statement. We demonstrate that the binding free energy of the ion-pair hydrogen-bonded complex between 2-fluoropropionic acid and n-butylamine (CH3CHFCOO-…NH3But+) increases with increased solvent polarity. This phenomenon is rationalized by a substantial charge transfer between the subsystems that constitute the ion-pair hydrogen-bonded complex. This unexpected finding introduces a new perspective to our understanding of solvation dynamics, emphasizing the interplay between solvent polarity and molecular stability within hydrogen-bonded systems.

9.
Solid State Nucl Magn Reson ; 130: 101921, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422809

RESUMEN

The development of NMR crystallography methods requires a reliable database of chemical shifts measured for systems with known crystal structure. We measured and assigned carbon and hydrogen chemical shifts of twenty solid natural amino acids of known polymorphic structure, meticulously determined using powder X-ray diffraction. We then correlated the experimental data with DFT-calculated isotropic shieldings. The small size of the unit cell of most amino acids allowed for advanced computations using various families of DFT functionals, including generalized gradient approximation (GGA), meta-GGA and hybrid DFT functionals. We tested several combinations of functionals for geometry optimizations and NMR calculations. For carbon shieldings, the widely used GGA functional PBE performed very well, although an improvement could be achieved by adding shielding corrections calculated for isolated molecules using a hybrid functional. For hydrogen nuclei, we observed the best performance for NMR calculations carried out with structures optimized at the hybrid DFT level. The high fidelity of the calculations made it possible to assign additional signals that could not be assigned based on experiments alone, for example signals of two non-equivalent molecules in the unit cell of some of the amino acids.


Asunto(s)
Aminoácidos , Carbono , Cristalografía , Espectroscopía de Resonancia Magnética/métodos , Hidrógeno
10.
Chem Sci ; 15(2): 594-608, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38179543

RESUMEN

Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in α-helices, and only 3% occurs in the extended parts of proteins (typically ß-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'α-helical' in proteins), KAM(α), ALA(α), DIC(α), EKF(α), IYI(pro-ß-sheet or more generally, pro-extended), and VIV(ß), and the reference α-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal "folding seeds". Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.

11.
Chem Commun (Camb) ; 60(8): 960-963, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37955197

RESUMEN

Dielectric spectroscopy has been used to determine the barriers of rotation of surface-mounted fullerenes (2.3 ± 0.1 and 4.3 ± 0.1 kcal mol-1). In order to achieve this, a C60 derivative equipped with an anchoring group designed to form a surface inclusion with the hexagonal form of tris(o-phenylenedioxy)cyclotriphosphazene (TPP) has been synthesized. Solid-state NMR analysis revealed that approximately 50% of the surface-mounted molecules have a chemical environment different from the others suggesting two distinct insertion modes. These observations correlate with results of DFT calculations.

12.
Chemistry ; 30(4): e202302828, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37858965

RESUMEN

We assembled photoresponsive mono- and bilayer systems with well-defined properties from rod-shaped molecules equipped with different photoswitches. Using properly chosen chromophores (diarylethene-based switch and unidirectional light-driven molecular motor), we then selectively targeted layers made of the same types of photoswitches using appropriate monochromatic light. UV-vis analysis confirmed smooth and unrestricted photoisomerization. To achieve this, we synthesized a new class of triptycene-based molecular pedestals adept at forming sturdy Langmuir-Blodgett films on a water-air interface. The films were smoothly transferred to gold and quartz surfaces. Repeated deposition afforded bilayer systems: one layer containing diarylethene-based photoswitches and the other a unidirectional light-driven molecular motor. Structural analysis of both mono- and bilayer systems revealed the molecules to be tilted with carboxylic functions pointing to the surface. At least two different polymorphs differing in monolayer thickness and tilt angle (~40° and ~60°) were identified on the gold surface.

13.
Angew Chem Int Ed Engl ; 63(2): e202315162, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38081132

RESUMEN

N-Trifluoromethylated organics may be applied in drug design, agrochemical synthesis, and materials science, among other areas. Yet, despite recent advances in the synthesis of aliphatic, cyclic and heterocyclic N-trifluoromethyl compounds, no strategy based on trifluoromethyl nitrene has hitherto been explored. Here we describe the formation of triplet trifluoromethyl nitrene from azidotrifluoromethane, a stable and safe-to-use precursor, by visible light photocatalysis. The addition of CF3 N to alkenes via biradical intermediates afforded previously unknown aziridines substituted with trifluoromethyl group on the nitrogen atom. The obtained aziridines were converted into either N-trifluoromethylimidazolines, via formal [3+2] cycloaddition with nitriles, mediated by a Lewis acid, or into N-trifluoromethylaldimines, via ring opening and aryl group migration mediated by a strong Brønsted acid. Our findings open new opportunities for the development of novel classes of N-CF3 compounds with possible applications in the life sciences.

14.
Chem Sci ; 14(35): 9258-9266, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37712024

RESUMEN

Cucurbit[7]uril (CB[7]) encapsulates adamantyl and trimethylsilyl substituents of positively charged guests in dimethyl sulfoxide (DMSO). Unlike in water or deuterium oxide, addition of a selection of alkali and alkali-earth cations with van der Waals radii between 1.0 and 1.4 Å (Na+, K+, Ca2+, Sr2+, Ba2+ and Eu3+) to the CB[7]/guest complexes triggers their cation-mediated trimerization, a process that is very slow on the nuclear magnetic resonance (NMR) time scale. Smaller (Li+, Mg2+) or larger cations (Rb+, Cs+ or NH4+) are inert. The trimers display extensive CH-O interactions between the equatorial and pseudo-equatorial hydrogens of CB[7] and the carbonyl rim of the neighboring CB[7] unit in the trimer, and a deeply nested cation between the three interacting carbonylated CB[7] rims; a counteranion is likely perched in the shallow cavity formed by the three outer walls of CB[7] in the trimer. Remarkably, a guest must occupy the cavity of CB[7] for trimerization to take place. Using a combination of semi-empirical and density functional theory techniques in conjunction with continuum solvation models, we showed that trimerization is favored in DMSO, and not in water, because the penalty for the partial desolvation of three of the six CB[7] portals upon aggregation into a trimer is less unfavorable in DMSO compared to water.

15.
Eur J Med Chem ; 259: 115685, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567057

RESUMEN

Cyclic dinucleotides (CDNs) trigger the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which plays a key role in cytosolic DNA sensing and thus in immunomodulation against infections, cell damage and cancer. However, cancer immunotherapy trials with CDNs have shown immune activation, but not complete tumor regression. Nevertheless, we designed a novel class of CDNs containing vinylphosphonate based on a STING-affinity screening assay. In vitro, acyloxymethyl phosphate/phosphonate prodrugs of these vinylphosphonate CDNs were up to 1000-fold more potent than the clinical candidate ADU-S100. In vivo, the lead prodrug induced tumor-specific T cell priming and facilitated tumor regression in the 4T1 syngeneic mouse model of breast cancer. Moreover, we solved the crystal structure of this ligand bound to the STING protein. Therefore, our findings not only validate the therapeutic potential of vinylphosphonate CDNs but also open up opportunities for drug development in cancer immunotherapy bridging innate and adaptive immunity.


Asunto(s)
Neoplasias , Nucleótidos Cíclicos , Animales , Ratones , Nucleótidos Cíclicos/farmacología , Nucleótidos Cíclicos/metabolismo , ADN , Neoplasias/tratamiento farmacológico , Inmunoterapia , Inmunidad Innata
16.
J Med Chem ; 66(16): 11133-11157, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37535845

RESUMEN

FLT3 kinase is a potential drug target in acute myeloid leukemia (AML). Patients with FLT3 mutations typically have higher relapse rates and worse outcomes than patients without FLT3 mutations. In this study, we investigated the suitability of various heterocycles as central cores of FLT3 inhibitors, including thieno[3,2-d]pyrimidine, pyrazolo[1,5-a]pyrimidine, imidazo[4,5-b]pyridine, pyrido[4,3-d]pyrimidine, and imidazo[1,2-b]pyridazine. Our assays revealed a series of imidazo[1,2-b]pyridazines with high potency against FLT3. Compound 34f showed nanomolar inhibitory activity against recombinant FLT3-ITD and FLT3-D835Y (IC50 values 4 and 1 nM, respectively) as well as in the FLT3-ITD-positive AML cell lines MV4-11, MOLM-13, and MOLM-13 expressing the FLT3-ITD-D835Y mutant (GI50 values of 7, 9, and 4 nM, respectively). In contrast, FLT3-independent cell lines were much less sensitive. In vitro experiments confirmed suppression of FLT3 downstream signaling pathways. Finally, the treatment of MV4-11 xenograft-bearing mice with 34f at doses of 5 and 10 mg/kg markedly blocked tumor growth without any adverse effects.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Piridazinas , Humanos , Ratones , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridazinas/farmacología , Piridazinas/uso terapéutico , Leucemia Mieloide Aguda/patología , Pirimidinas/farmacología , Tirosina Quinasa 3 Similar a fms/genética , Mutación , Apoptosis
17.
Angew Chem Int Ed Engl ; 62(36): e202306828, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37436086

RESUMEN

The development of reagents that can selectively react in complex biological media is an important challenge. Here we show that N1-alkylation of 1,2,4-triazines yields the corresponding triazinium salts, which are three orders of magnitude more reactive in reactions with strained alkynes than the parent 1,2,4-triazines. This powerful bioorthogonal ligation enables efficient modification of peptides and proteins. The positively charged N1-alkyl triazinium salts exhibit favorable cell permeability, which makes them superior for intracellular fluorescent labeling applications when compared to analogous 1,2,4,5-tetrazines. Due to their high reactivity, stability, synthetic accessibility and improved water solubility, the new ionic heterodienes represent a valuable addition to the repertoire of existing modern bioorthogonal reagents.

18.
ACS Omega ; 8(28): 25538-25548, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483191

RESUMEN

Hydrogen bonding between nucleobases is a crucial noncovalent interaction for life on Earth. Canonical nucleobases form base pairs according to two main geometries: Watson-Crick pairing, which enables the static functions of nucleic acids, such as the storing of genetic information; and Hoogsteen pairing, which facilitates the dynamic functions of these biomacromolecules. This precisely tuned system can be affected by oxidation or substitution of nucleobases, leading to changes in their hydrogen-bonding patterns. This paper presents an investigation into the intermolecular interactions of various 8-substituted purine derivatives with their hydrogen-bonding partners. The systems were analyzed using nuclear magnetic resonance spectroscopy and density functional theory calculations. Our results demonstrate that the stability of hydrogen-bonded complexes, or base pairs, depends primarily on the number of intermolecular H-bonds and their donor-acceptor alternation. No strong preferences for a particular geometry, either Watson-Crick or Hoogsteen, were found.

19.
J Med Chem ; 66(3): 1761-1777, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36652602

RESUMEN

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent cornerstones of current regimens for treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, NNRTIs usually suffer from low aqueous solubility and the emergence of resistant viral strains. In the present work, novel bicyclic NNRTIs derived from etravirine (ETV) and rilpivirine (RPV), bearing modified purine, tetrahydropteridine, and pyrimidodiazepine cores, were designed and prepared. Compounds 2, 4, and 6 carrying the acrylonitrile moiety displayed single-digit nanomolar activities against the wild-type (WT) virus (EC50 = 2.5, 2.7, and 3.0 nM, respectively), where the low nanomolar activity was retained against HXB2 (EC50 = 2.2-2.8 nM) and the K103N and Y181C mutated strains (fold change, 1.2-6.7×). Most importantly, compound 2 exhibited significantly improved phosphate-buffered saline solubility (10.4 µM) compared to ETV and RPV (≪1 µM). Additionally, the binding modes of compounds 2, 4, and 6 to the reverse transcriptase were studied by X-ray crystallography.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Humanos , Fármacos Anti-VIH/química , VIH-1/metabolismo , Inhibidores de la Transcriptasa Inversa , Transcriptasa Inversa del VIH/metabolismo , Infecciones por VIH/tratamiento farmacológico , Rilpivirina/uso terapéutico , Diseño de Fármacos
20.
J Org Chem ; 88(1): 49-59, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36480791

RESUMEN

The dimeric steroid SMR-3, featuring a 1,4-phenyldiboronic ester flanked by two pregnan-triol frameworks, was synthesized to explore the intramolecular dynamics of its central component. The structural data from single-crystal X-ray diffraction studies and the Hirshfeld analyses indicate small steric effects around the aromatic ring that should favor the intended motion. However, solid-state NMR data obtained through VT 13C{1H} CPMAS and 2H spin-echo experiments, using the deuterated analogue SMR-3D4, revealed that this component is rigid even at temperatures where other reported steroidal molecular rotors experience fast rotation (85 °C). A combination of classical molecular dynamics, molecular mechanics, and correlated ab initio calculations allowed us to distinguish the steric and electronic factors that restrict the potential motion in this compound. The experimental and computational data reveal that electronic components dominate the behavior and are responsible for the high rotational barrier in the SMR-3 crystal.


Asunto(s)
Imagen por Resonancia Magnética , Simulación de Dinámica Molecular , Rotación , Espectroscopía de Resonancia Magnética , Esteroides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA