Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 115: 419-431, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924957

RESUMEN

Regular aerobic activity is associated with a reduced risk of chronic pain in humans and rodents. Our previous studies in rodents have shown that prior voluntary wheel running can normalize redox signaling at the site of peripheral nerve injury, attenuating subsequent neuropathic pain. However, the full extent of neuroprotection offered by voluntary wheel running after peripheral nerve injury is unknown. Here, we show that six weeks of voluntary wheel running prior to chronic constriction injury (CCI) reduced the terminal complement membrane attack complex (MAC) at the sciatic nerve injury site. This was associated with increased expression of the MAC inhibitor CD59. The levels of upstream complement components (C3) and their inhibitors (CD55, CR1 and CFH) were altered by CCI, but not increased by voluntary wheel running. Since MAC can degrade myelin, which in turn contributes to neuropathic pain, we evaluated myelin integrity at the sciatic nerve injury site. We found that the loss of myelinated fibers and decreased myelin protein which occurs in sedentary rats following CCI was not observed in rats with prior running. Substitution of prior voluntary wheel running with exogenous CD59 also attenuated mechanical allodynia and reduced MAC deposition at the nerve injury site, pointing to CD59 as a critical effector of the neuroprotective and antinociceptive actions of prior voluntary wheel running. This study links attenuation of neuropathic pain by prior voluntary wheel running with inhibition of MAC and preservation of myelin integrity at the sciatic nerve injury site.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Humanos , Ratas , Animales , Vaina de Mielina/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento , Actividad Motora/fisiología , Traumatismos de los Nervios Periféricos/complicaciones , Hiperalgesia/metabolismo , Neuralgia/complicaciones , Nervio Ciático/lesiones
2.
Pain ; 163(10): 1939-1951, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486864

RESUMEN

ABSTRACT: Animal and human studies have shown that exercise prior to nerve injury prevents later chronic pain, but the mechanisms of such preconditioning remain elusive. Given that exercise acutely increases the formation of free radicals, triggering antioxidant compensation, we hypothesized that voluntary running preconditioning would attenuate neuropathic pain by supporting redox homeostasis after sciatic nerve injury in male and female rats. We show that 6 weeks of voluntary wheel running suppresses neuropathic pain development induced by chronic constriction injury across both sexes. This attenuation was associated with reduced nitrotyrosine immunoreactivity-a marker for peroxynitrite-at the sciatic nerve injury site. Our data suggest that prior voluntary wheel running does not reduce the production of peroxynitrite precursors, as expression levels of inducible nitric oxide synthase and NADPH oxidase 2 were unchanged. Instead, voluntary wheel running increased superoxide scavenging by elevating expression of superoxide dismutases 1 and 2. Prevention of neuropathic pain was further associated with the activation of the master transcriptional regulator of the antioxidant response, nuclear factor E2-related factor 2 (Nrf2). Six weeks of prior voluntary wheel running increased Nrf2 nuclear translocation at the sciatic nerve injury site; in contrast, 3 weeks of prior wheel running, which failed to prevent neuropathic pain, had no effect on Nrf2 nuclear translocation. The protective effects of prior voluntary wheel running were mediated by Nrf2, as suppression was abolished across both sexes when Nrf2 activation was blocked during the 6-week running phase. This study provides insight into the mechanisms by which physical activity may prevent neuropathic pain. Preconditioning by voluntary wheel running, terminated prior to nerve injury, suppresses later neuropathic pain in both sexes, and it is modulated through the activation of Nrf2-antioxidant signaling.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Animales , Antioxidantes , Femenino , Hiperalgesia/prevención & control , Masculino , Actividad Motora/fisiología , NADPH Oxidasa 2/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neuralgia/metabolismo , Neuralgia/prevención & control , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ácido Peroxinitroso/metabolismo , Ratas , Ratas Sprague-Dawley , Neuropatía Ciática/prevención & control , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...