Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(24): 4707-4714, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38833263

RESUMEN

Fluid objects bounded by elastocapillary membranes display intriguing physical properties due to the interplay of capillary and elastic stresses arising upon deformation. Increasingly exploited in foam or emulsion science, the mechanical properties of elastocapillary membranes are commonly characterised by the shape analysis of inflating/deflating bubbles or drops held by circular needles. These impose complex constraints on the membrane deformation, requiring the shape analysis to be done using elaborate numerical fitting procedures of the shape equations. While this approach has proven quite reliable, it obscures insight into the underlying physics of the problem. We therefore propose here the first fully theoretical approach to this problem using the elastic theory for a membrane with additive contributions of capillary and Hookean-type elastic stresses. We exploit this theory to discuss some of the key features of the predicted pressure-deformation relations. Interestingly, we highlight a breakdown of the quadratic approximation at a well-defined value of the elastocapillary parameter depending on the shape of the reference state, which is regularized by the non-quadratic terms. Additionally, we provide an analytical relationship which allows experimentalists to obtain the elastocapillary properties of a membrane by simple measurement of the height and the width of a deformed bubble (or a drop).

2.
Langmuir ; 40(20): 10492-10501, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38720170

RESUMEN

Physical alginate hydrogels commonly rely on "internal gelation" to introduce the cross-linker, e.g., calcium (Ca(II)) ions. These are released in a homogeneous manner by using a pH-sensitive Ca(II) carrier and glucono-delta-lactone (GDL) as the acidifier. Yet, it remains unclear how the carrier of the cross-linker affects the gelation process and final hydrogel properties. We therefore investigate two internal gelation methods using either Ca(II)-chelating ligand complexes or insoluble Ca(II)-based salts. Ionometry coupled with pH measurements reveals the release process of Ca(II) ions upon acidification, which is well described by simulations using the Hyperquad Simulation and Speciation program. We show that these findings correlate well with the evolution of the mechanical properties of the hydrogels. Although the two pH-triggered gelation methods appear to be similar, we demonstrate their differences in terms of the gelation kinetics and final cross-link density. The nature of the ligand or the salt significantly affects the fraction of the released Ca(II) ions and, hence, the mechanical properties of the final hydrogel for a given GDL concentration. Furthermore, for the first time, we demonstrate the competition between GDL and alginate in binding with Ca(II) ions. This study therefore provides different tools for the efficient formulation of alginate hydrogels.

3.
Gels ; 8(7)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35877529

RESUMEN

The reliable generation of hydrogel foams remains a challenge in a wide range of sectors, including food, cosmetic, agricultural, and medical applications. Using the example of calcium alginate foams, we introduce a novel foam generation method that uses CO2 for the simultaneous foaming and pH reduction of the alginate solution to trigger gelation. We show that gelled foams of different gas fractions can be generated in a simple one-step process. We macroscopically follow the acidification using a pH-responsive indicator and investigate the role of CO2 in foam ageing via foam stability measurements. Finally, we demonstrate the utility of interfacial rheology to provide evidence for the gelation process initiated by the dissolution of the CO2 from the dispersed phase. Both approaches, gas-initiated gelation and interfacial rheology for its characterization, can be readily transferred to other types of gases and formulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...