Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(16): 11185-11196, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38590349

RESUMEN

A mixed-valence trinuclear cobalt(iii)-cobalt(ii)-cobalt(iii) complex, [(µ-1,3-N3)Co3L(N3)3]·MeOH has been synthesized using a tetradentate N2O2 donor 'reduced Schiff base' ligand, H2L {1,3-bis(2-hydroxybenzylamino)2,2-dimethylpropane} and azide as anionic co-ligand. The complex has been characterised by elemental analysis, IR, UV-vis spectroscopy and single-crystal X-ray diffraction studies etc. The cobalt(iii)-cobalt(ii)-cobalt(iii) skeleton in the complex is non-linear and non-centrosymmetric. The redox behavior of the complex was studied by using Cyclic Voltammetry (CV). The complex is found to be a semiconductor material as confirmed by determining the band gap of this complex by experimental as well as theoretical studies. The band gap in the solid state has been determined experimentally. The conductivity of the synthesized complex based device improves considerably in illumination conditions from the non-illuminated conditions. The complex has also been used to fabricate Schottky barrier diodes.

2.
RSC Adv ; 14(19): 13200-13208, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38655483

RESUMEN

A trinuclear linear mixed-valence centrosymmetric cobalt(iii)-cobalt(ii)-cobalt(iii) complex, [CoII{(µ-L)(µ-Hglu)CoIII(OH2)}2](ClO4)2·6H2O has been synthesized during tetradentate N2O2 donor 'Schiff base' ligand, H2L {N,N'-bis(salicylidene)-1,3-diaminopropane} and glutaric acid (H2glu) as anionic co-ligand. The complex has been characterized by spectroscopic measurements and its solid state structure has been determined by single crystal X-ray diffraction analysis. The supra-molecular assembly formed by the hydrogen bonding interactions in the solid state of the complex has been analysed using DFT calculations.

4.
RSC Adv ; 13(42): 29568-29583, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37818264

RESUMEN

Three cobalt complexes, namely [CoIII(HL1)2(N3)2]ClO4 (1), [CoIII(L2)(HL2)(N3)]ClO4·1.5H2O (2), and [CoIII(L3)(HL3)(NCS)]2 [CoIICl2(NCS)2] (3), where HL1 = 2-(3-(dimethylamino)propyliminomethyl)-6-methoxyphenol, HL2 = 2-(2-(dimethylamino)ethyliminomethyl)-4,6-dichlorophenol, and HL3 = 2-(2-(dimethylamino)ethyliminomethyl)-6-methoxyphenol, as potential tridentate N2O-donor Schiff base ligands, were synthesized and characterized using elemental analysis, IR and UV-vis spectroscopy, and single-crystal X-ray diffraction studies. All three were found to be monomeric ionic complexes. Complex 1 crystallizes in the orthorhombic space group Pbcn, whereas both complexes 2 and 3 crystallize in triclinic space groups, P1̄. Further, 1 and 2 are cationic complexes of octahedral cobalt(iii) with perchlorate anions, whereas complex 3 contains a cationic part of octahedral cobalt(iii) and an anionic part of tetrahedral cobalt(ii). Hydrogen-bonding interactions involving aromatic and aliphatic CH bonds as H-bond donors and the pseudo-halide co-ligands as H-bond acceptors were established, which are important aspects governing the X-ray packing. These interactions were analyzed theoretically using the quantum theory of atoms in molecules (QTAIM) and non-covalent interaction plot (NCI plot) analyses. Moreover, energy decomposition analysis (EDA) was performed to analyze the stabilization of the complexes in terms of the electrostatic, dispersion, and correlation forces.

5.
RSC Adv ; 13(31): 21211-21224, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37456548

RESUMEN

Four manganese(iii) complexes, [MnL1(H2O)2]ClO4·H2O (1), [MnL2(H2O)2]ClO4 (2), [MnL3(DMSO)(H2O)]ClO4 (3) and [MnL4(DMSO)(H2O)]ClO4 (4), where H2L1 = N,N'-bis(5-bromosalicylidene)-1,3-diaminopropane, H2L2 = 2,2-dimethyl-N,N-bis(3-methyloxysalicylidene)-1,3-diaminopropane, H2L3 = N,N'-bis(5-chlorosalicylidene)-2,2-dimethyl-1,3-diaminopropane and H2L4 = 2-hydroxy-N,N'-bis(3-ethyloxysalicylidene)-1,3-diaminopropane are tetradentate N2O2-donor ligands and DMSO = dimethyl sulfoxide, have been synthesized and characterised by elemental analysis, IR and UV-vis spectroscopy and single-crystal X-ray diffraction studies. All are monomeric complexes. Complex 1 crystallises in orthorhombic space group P212121, complex 3 crystallises in triclinic space group P-1, whereas complexes 2 and 4 crystallize in monoclinic space groups, C2/c and C2/m respectively. In all the complexes, manganese(iii) has a six-coordinated pseudo-octahedral geometry in which imine nitrogen atoms and phenolate oxygen atoms of the deprotonated di-Schiff base constitute the equatorial plane. In complexes 1 and 2, water molecules are present in the fifth and sixth coordination sites in the axial positions while in complexes 3 and 4 they are occupied by one water and one DMSO. The coordinated water molecules initiate hydrogen-bonded networks in all complexes. DFT calculations have been carried out to analyze two aspects of these complexes viz. the formation of halogen (HaB) and chalcogen bonding (ChB) interactions in complexes 1 and 3 where the electron donor is the perchlorate anion and the acceptor either bromine or chlorine atoms for the HaBs and the sulfur atom of the coordinated DMSO for the ChB. In addition, other intermolecular effects are discussed in the solid state for complexes 1, 2 and 4, where the hydrogen atoms of the coordinated water molecules interact with the electron rich cavities formed by the phenolate and alkyloxy oxygen atoms of the Schiff-base ligand.

6.
Dalton Trans ; 51(34): 13003-13014, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35968800

RESUMEN

Four new functionalized Ni(II) dithiocarbamate complexes of the formula [Ni(Lx)2] (1-4) (L1 = N-methylthiophene-N-3-pyridylmethyl dithiocarbamate, L2 = N-methylthiophene-N-4-pyridylmethyl dithiocarbamate, L3 = N-benzyl-N-3-pyridylmethyl dithiocarbamate, and L4 = N-benzyl-N-4-pyridylmethyl dithiocarbamate) have been synthesized and characterized by IR, UV-vis, and 1H and 13C{1H} NMR spectroscopic techniques. The solid-state structure of complex 1 has also been determined by single crystal X-ray crystallography. Single crystal X-ray analysis revealed a monomeric centrosymmetric structure for complex 1 in which two dithiocarbamate ligands are bonded to the Ni(II) metal ion in a S^S chelating mode resulting in a square planar geometry around the nickel center. These complexes are immobilized on activated carbon cloth (CC) and their electrocatalytic performances for the oxygen evolution reaction (OER) have been investigated in aqueous alkaline solution. All the complexes act as pre-catalysts for the OER and undergo electrochemical anodic activation to form Ni(O)OH active catalysts. Spectroscopic and electrochemical characterization revealed the existence of the interface of molecular complex/Ni(O)OH, which acts as the real catalyst for the OER. The active catalyst obtained from complex 2 showed the best OER activity achieving 10 mA cm-2 current density at an overpotential of 330 mV in 1.0 M aqueous KOH solution.

7.
J Inorg Biochem ; 234: 111900, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35717882

RESUMEN

The basic criteria for the formation of complexes with VO3+, V2O34+ and VO2+ motifs from the VO2+ motif and their interconversion were explored utilizing two multidentate O,N-donor hydrazone ligands namely, E-2-Hydroxy-N'-(4-oxopentan-2-ylidine)benzohydrazide (H3L1) and E-2-Hydroxy-N'-(4-oxo-4-phenylbutan-2-ylidine)benzohydrazide (H3L2), derived from the condensation of 2-hydroxybenzoylhydrazide with acetylacetone and benzoylacetone respectively. Under aerobic condition, the possibility of forming complexes with different motifs in different solvents with varying pH was examined theoretically by computational methods with results that were verified experimentally. This study reveals that under aerobic condition, complexes with VO3+ (1,2) and V2O34+ (3, 4) motifs were formed in protic CH3OH and neutral CHCl3 solvent respectively while the formation of complexes (5-14) with VO2+ motif required protic CH3OH solvent and higher pH (≥ 7). Interconversion of VO3+, V2O34+ and VO2+ motifs are associated with specific acid-base equilibria, substantiated by 51V NMR titrations. Complexes containing these three motifs exhibited promising in vitro anticancer activity in SiHa cervical cancer cells without affecting healthy cells; among them complexes (5-14) with VO2+ motif are more potent. A detailed systematic mechanistic study was carried out, utilizing the two most potent complexes 5 and 6 (IC50 = 13, 6 µM respectively), which indicates that cytotoxicity and anti-proliferative activity of these complexes are manifested through oxidative stress induced apoptotic pathways (caspase mediated).


Asunto(s)
Neoplasias del Cuello Uterino , Vanadio , Femenino , Humanos , Hidrazonas/química , Ligandos , Solventes , Neoplasias del Cuello Uterino/tratamiento farmacológico , Vanadio/química
8.
Molecules ; 27(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35566259

RESUMEN

This work facilitates detection of bivalent copper ion by a simple Schiff base probe QNH based on a quinoxaline-naphthaldehyde framework. The detailed study in absorption spectroscopy and theoretical aspects and crystal study of the probe and probe-copper complex has been discussed. The detection limit of the probe in the presence of Cu2+ is 0.45 µM in HEPES-buffer/acetonitrile (3/7, v/v) medium for absorption study. The reversibility of the probe-copper complex has been investigated by EDTA. The selective visual detection of copper has been established also in gel form.


Asunto(s)
Colorimetría , Cobre , Colorimetría/métodos , Cobre/química , Colorantes Fluorescentes/química , Quinoxalinas , Bases de Schiff/química
9.
Biometals ; 35(3): 499-517, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35355153

RESUMEN

A family of dioxidovanadium(V) complexes (1-4) of the type [Na(H2O)x]+[VVO2(HL1-4)]- (x = 4, 4.5 and 7) where HL2- represents the dianionic form of 2-hydroxybenzoylhydrazone of 2-hydroxyacetophenone (H2L1, complex 1), 2-hydroxy-5-methylacetophenone (H2L2, complex 2), 2-hydroxy-5-methoxyacetophenone (H2L3, complex 3) and 2-hydroxy-5-chloroacetophenone (H2L4, complex 4), have been synthesized and characterized by analytical and spectral methods. These complexes exhibited the potential abilities to suppress the erythrocytes carbonic anhydrase enzymatic activity in type 1 and type 2 diabetic patients (in vitro), promising antidiabetic activity against T2 diabetic mice (in vivo). They also exhibited significant cytotoxic activity against cervical cancer (SiHa) cells (in vitro) as the IC50 value of complexes 1, 2 and 4 is substantially lower than the value found for cisplatin while that of 3 is comparable and follow the order: 4 < 1 < 2 < 3 and can kill the cells by apoptosis via the generation of reactive oxygen species (ROS). The complexes are soluble both in water and octanol media and also non-toxic at working concentrations. The antidiabetic activity of these four complexes follows the order: 4 > 2 > 1 > 3 while both the carbonic anhydrase and cytotoxic activity follow the order: 4 > 1 > 2 > 3 suggesting that complex 4, containing electron withdrawing Cl atom is the most reactive while 3 with electron donating OCH3 group is the least reactive species. The molecular docking study on hCA-I and hCA-II demonstrates that complexes interact via hydrogen bonding as well as different types of π-stacking.


Asunto(s)
Antineoplásicos , Anhidrasas Carbónicas , Diabetes Mellitus Experimental , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Humanos , Hidrazonas/química , Hidrazonas/farmacología , Hipoglucemiantes/farmacología , Ratones , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
10.
Chemphyschem ; 23(4): e202100718, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34902204

RESUMEN

We herein report two salicyaldehyde-quinoxaline (HQS and HQSN) conjugates and a benzaldehyde-quinoxaline (QBN) conjugate to fabricate selective chemosensors for F- and Hg2+ in the micromolar range. This work demonstrates how sensing outcomes are affected by modulating proton acidity by introducing an electron donating group, -NEt2 , in the probe backbone. Interestingly, the un-substituted probe HQS can selectively detect F- , whereas HQSN and QBN are selective for Hg2+ . In order to gain insights into the mechanism of sensing, geometry optimizations have been carried out on QS(-1) , QS(-1) ⋅⋅⋅HF, QSN(-1) and QSN(-1) ⋅⋅⋅HF and the experimental data are validated in terms of free energy and pKa values. Detailed DFT and TD-DFT analyses provide ample support towards the mechanism of sensing of the analytes.


Asunto(s)
Colorimetría , Mercurio , Benzaldehídos , Protones , Quinoxalinas
11.
Inorg Chem ; 60(9): 6446-6462, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33881858

RESUMEN

Four new mononuclear/coordination polymeric (CP) zinc(II) complexes (1-4) of ferrocenyl/pyridyl-functionalized dithiocarbamate ligands, N-ferrocenylmethyl-N-butyl dithiocarbamate (L1), N-ferrocenylmethyl-N-ethylmorpholine dithiocarbamate (L2), N-ferrocenylmethyl-N-2-(diethylamino)ethylamine dithiocarbamate (L3), and N-4-methoxybenzyl-N-3-methylpyridyl dithiocarbamate (L4), have been synthesized and characterized by elemental analyses, IR, UV-vis, and 1H and 13C{1H} NMR spectroscopic techniques. The solid-state structures of complexes 1, 3, and 4 have been determined by single-crystal X-ray crystallography as well as powder X-ray diffraction. Single-crystal X-ray crystallography revealed a monomeric structure for complex 1 but 1D polymeric structures for complexes 3 and 4. In all complexes, dithiocarbamate ligands are bonded to the Zn(II) metal ion in a S^S chelating mode, and in the CPs, N atoms on the 2-(diethylamino)ethylamine and 3-pyridyl functionalities in the ligands on the neighboring molecules are also bonded to metal centers, leading to the formation of either a discrete tetrahedral molecule in 1 or 1D CP structures in 3 and 4. The Zn(II) metal centers in the polymeric structures exhibited either square-pyramidal or octahedral geometries. The supramolecular structures in these complexes are sustained via C-H···π (ZnCS2, chelate; 3 and 4), C-H···π, and H···H interactions. The catalytic performances of complexes have also been assessed in the Knoevenagel condensation and one-pot multicomponent reactions. Catalysis results showed that the CP 3 acts as a heterogeneous bifunctional catalyst with excellent transformation efficiency at low catalyst loading.

12.
Inorg Chem ; 59(16): 11417-11431, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799477

RESUMEN

Five novel zinc(II) and cadmium(II) ß-oxodithioester complexes, [Zn(L1)2] (1), [Zn(L2)2]n (2), [Zn(L3)2]n (3) [Cd(L1)2]n (4), [Cd(L2)2]n (5), with ß-oxodithioester ligands, where L1 = 3-(methylthio)-1-(thiophen-2-yl)-3-thioxoprop-1-en-1-olate, L2 = 3-(methylthio)-1-(pyridin-3-yl)-3-thioxoprop-1-en-1-olate, and L3 = 3-(methylthio)-1-(pyridin-4-yl)-3-thioxoprop-1-en-1-olate, were synthesized and characterized by elemental analysis, IR, UV-vis, and NMR spectroscopy (1H and 13C{1H}). The solid-state structures of all complexes were ascertained by single-crystal X-ray crystallography. The ß-oxodithioester ligands are bonded to Zn(II)/Cd(II) metal ions in an O∧S and N chelating/chelating-bridging fashion leading to the formation of 1D (in 2-4) and 2D (in 5) coordination polymeric structures, but complex 1 was obtained as a discrete tetrahedral molecule. Complex 4 crystallizes in the C2 chiral space group and has been studied using circular dichroism (CD) spectroscopy. The multidimensional assemblies in these complexes are stabilized by many important noncovalent C-H···π (ZnOSC3, chelate), π···π, C-H···π, and H···H interactions. The catalytic activities of 1-5 in reactions involving C-C and C-O bond formation have been studied, and the results indicated that complex 3 can be efficiently utilized as a heterogeneous bifunctional catalyst for the Knoevenagel condensation and multicomponent reactions to develop biologically important organic molecules. The luminescent properties of complexes were also studied. Interestingly, zinc complexes 1-3 showed strong lumniscent emission in the solid state, whereas cadmium complexes 4 and 5 exhibited bright luminescent emission in the solution phase. The semiconducting behavior of the complexes was studied by solid-state diffuse reflectance spectra (DRS), which showed optical band gaps in the range of 2.49-2.62 eV.

13.
Dalton Trans ; 49(32): 11268-11281, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32760992

RESUMEN

Five new heterometallic Cu(ii)-Mn(ii) discrete trinuclear complexes, [(CuL)2Mn(CH3COO)2] (1), [(CuL)2Mn(NO3)2] (2), [(CuL)2Mn(C6H5COO)(H2O)]Cl (3), [(CuL)2Mn((p-OH)C6H5COO)(H2O)]ClO4 (4) and [(CuL)2Mn(HCOO)(H2O)]ClO4 (5), have been synthesized using a metalloligand, CuL derived from an N2O2 donor Schiff base, H2L (N,N'-bis(α-methylsalicylidene)-1,3-propanediamine). Single-crystal structural analyses reveal that all five complexes have a common [(CuL)2Mn] core, where two terminal metalloligands, CuL, are connected to the central metal ion, Mn(ii), via double phenoxido bridges. Among the complexes, 1 and 2 possess linear structures where the terminal Cu(ii) atoms are bridged to the central Mn(ii) atoms by acetate and nitrate ions, respectively along with the double phenoxido bridges, whereas 3, 4 and 5 have bent structures in which the respective anionic coligands, benzoate, p-hydroxybenzoate and formate ions are coordinated only to central Mn(ii) in monodentate fashion along with a water molecule that completes its hexa-coordinated geometry. Among the complexes, 1, 3, 4 and 5 show quite high bio-mimicking catecholase-like activity for the aerial oxidation of 3,5-di-tert-butylcatechol with turnover numbers (Kcat) of 139 h-1, 439 h-1, 348 h-1 and 730 h-1, respectively, whereas complex 2 is practically inactive towards this reaction. The presence of the coordinated water molecule to Mn(ii) in the bent complexes, 3-5, appears to be responsible for their high catalytic activity and the difference in their activity may be attributed to steric crowding due to the anionic coligand, whereas the inactivity of 2 seems to be associated with the low basicity of the nitrate ion. The temperature-dependent dc molar magnetic susceptibility measurements reveal that complexes 1-5 are antiferromagnetically coupled with the exchange coupling constants (J) = -8.54 cm-1, -11.50 cm-1, -19.83 cm-1, -10.65 cm-1 and -10.27 cm-1 for 1, 2, 3, 4 and 5 respectively as is expected from the Cu-O-Mn bridging angles.


Asunto(s)
Benzoatos/química , Complejos de Coordinación/química , Cobre/química , Formiatos/química , Manganeso/química , Parabenos/química , Aniones/química , Catálisis , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Técnicas Electroquímicas , Ligandos , Modelos Moleculares , Bases de Schiff/química , Agua/química
14.
Dalton Trans ; 49(11): 3592-3605, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32129347

RESUMEN

Four new heteroleptic Ni(ii) complexes with general formula [Ni(ii)(LL')] (L = 2-(methylene-1,1'-dithiolato)-5-phenylcyclohexane-1,3-dione (L1) and 2-(methylene-1,1'-dithiolato)-5,5'-dimethylcyclohexane-1,3-dione (L2); L' = 1,2-bis(diphenylphosphino)ethane (dppe) and bis(diphenylphosphino)monosulphide methane (dppms) have been synthesized and characterized by elemental analysis and spectroscopy (IR, UV-Vis, 1H, 13C{1H} and 31P{1H} NMR). All complexes 1-4 have also been characterized by PXRD and single crystal X-ray crystallography. The solid state molecular structures revealed distorted square planar geometry about the four-coordinate Ni(ii) metal centre together with rare NiH-C intra/intermolecular anagostic interactions in axial positions. In these complexes supramolecular structures have been sustained by non-covalent C-HO, C-OH-O, C-Hπ, C-Hπ (NiCS2, chelate), ππ and HH interactions. Their electrocatalytic properties have been investigated for oxygen evolution reaction (OER) in which complex 2 showed the highest activity with 10 mA cm-2 at the potential of 1.58 V vs. RHE. In addition, complex 2 also exhibits an OER onset potential at 1.52 V vs. RHE.

15.
Dalton Trans ; 49(10): 3372-3374, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32104843

RESUMEN

Correction for 'Tri- and hexa-nuclear NiII-MnII complexes of a N2O2 donor unsymmetrical ligand: synthesis, structures, magnetic properties and catalytic oxidase activities' by A. Ghosh et al., Dalton Trans., 2018, 47, 13957-13971.

16.
Inorg Chem ; 59(2): 1125-1136, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31898893

RESUMEN

Polyoxotungstate supported titanocene {Cp2Ti}2+ clusters H6{K8(Cp2Ti)2P4W24O88(PO4)2}·14H2O (1), H6[Na2P4W14O58(Cp2Ti)2]·12H2O (2), and H2[K6{Cp2Ti}{PW9O33(WO2)}2{NC5H3(COOK)2}(NC5H3(CH3)COOK)·22H2O] (3) have been synthesized, and their single crystal X-ray structures have revealed unprecedented and intriguing structural features. The synthesized compounds have been characterized by various spectroscopic techniques including UV-vis, cyclic voltammogram, NMR, ESI-MS, and inductive coupled plasma spectroscopy (ICP) in solution and also by IR, TGA, and diffuse reflectance in the solid state. Clusters 1 and 2 are rare examples of lacunary POM supported titanocene clusters obtained by incorporating various phosphorus heteroatoms to form elusive phosphotungstate assemblies, whereas 3 is an unprecedented organometallic as well as heteroleptic pyridyl functionalized POM. Clusters 1-3 show transient photocurrent ON/OFF behavior upon UV-light irradiation and also exhibit characteristic TiIV/III intravalence electron transfer. This behavior is also established by their cyclic voltammograms in mixed phosphate buffers (Na2HPO4/NaH2PO4) which show the evidence of POM supported {Cp2Ti}2+/+ species in their redox solution. Furthermore, ESR line broadening is also observed in these clusters at room temperature, a fact which also confirms the formation of partially reduced/oxidized {Cp2Ti}2+/+ species leading to TiIV/III intravalence electron transfers within all three clusters. The {Cp2Ti}2+ decorated polyoxometalate cluster 3 shows improved transient photocurrent behavior which may be due to the presence of pyridyl carboxyl ions which provide better surface contact for the cluster molecule through the carboxylate moiety to the ITO electrode.

17.
Chemistry ; 26(7): 1612-1623, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31793668

RESUMEN

Two mononuclear uranyl complexes, [UO2 L1 ] (1) and [UO2 L2 ]⋅0.5 CH3 CN⋅0.25 CH3 OH (2), have been synthesized from two multidentate N3 O4 donor ligands, N,N'-bis(5-methoxysalicylidene)diethylenetriamine (H2 L1 ) and N,N'-bis(3-methoxysalicylidene)diethylenetriamine (H2 L2 ), respectively, and have been structurally characterized. Both complexes 1 and 2 showed a reversible UVI /UV couple at -1.571 and -1.519 V, respectively, in cyclic voltammetry. The reduction potential of the UVI /UV couple shifted towards more positive potential on addition of Li+ , Na+ , K+ , and Ag+ metal ions to acetonitrile solutions of complex 2, and the resulting potential was correlated with the Lewis acidity of the metal ions and was also justified by theoretical DFT calculations. No such shift in reduction potential was observed for complex 1. All four bimetallic products, [UO2 L2 Li0.5 ](ClO4 )0.5 (3), [UO2 L2 Na(ClO4 )]2 (4), [UO2 L2 Ag(NO3 )(H2 O)] (5), and [(UO2 L2 )2 K(H2 O)2 ]PF6 (6), formed on addition of the Li+ , Na+ , Ag+ , and K+ metal ions, respectively, to acetonitrile solutions of complex 2, were isolated in the solid state and structurally characterized by single-crystal X-ray diffraction. In all the species, the inner N3 O2 donor set of the ligand encompasses the equatorial plane of the uranyl ion and the outer open compartment with O2 O'2 donor sites hosts the second metal ion.

18.
Inorg Chem ; 58(21): 14449-14456, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31622087

RESUMEN

A pair of enantiomeric tetrahedral complexes (Λ-[Zn(L)2] and Δ-[Zn(L)2]) comprised of the achiral ligand methyl-3-hydroxy-3-phenyl-2-propenedithioate (L) have been synthesized by spontaneous resolution. Two chiral inducers, viz., d-(-)- and l-(+)-tartaric and mandelic acids, have been employed to achieve bulk homochirality and extend the generality of the present work. The work highlights the achievement of bulk homochirality using readily available chiral inducers in the synthesis of a spontaneously resolving chiral tetrahedral zinc(II) complex using achiral starting materials. These findings are established by 30 sets of single-crystal X-ray diffraction data with refined Flack parameters and circular dichroism spectroscopy.

19.
J Inorg Biochem ; 199: 110755, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31299376

RESUMEN

A neutral bidentate ligand 2-(3-methyl-5-phenyl pyrazol-1-yl) benzthiazole (L) has been synthesized by refluxing equimolar proportions of 2-hydrazino benzthiazole and benzoyl acetone in ethanol. The ligand acts in a NN donor fashion and forms stable mononuclear, MoOX3L [L = Ligand, X = Cl (1), Br (2)] and binuclear Mo2O4X2L2 [L = Ligand, X = Cl (3), Br (4)] complexes with molybdenum(V). The ligand and complexes are thoroughly characterized by elemental analyses, IR, UV-Vis spectroscopy, EPR study, magnetic susceptibility, thermogravimetry and cyclic voltammetry. Magnetic moment measurements reveal that the mononuclear complexes are paramagnetic while the binuclear complexes are diamagnetic in nature. EPR studies also confirm the presence of a mononuclear Mo(V) moiety in the complexes. Relevant Density Functional Theory (DFT) calculations have been carried out to determine the structures of the synthesized compounds. The binding mode and mechanism of interaction of the synthesized compounds with bovine serum albumin (BSA) were studied by concentration dependent absorption and fluorescence titration experiments. The ligand and complexes 1-4 are screened for their potential in vitro anticancer activities against three different human cancer cell lines, namely, cervix adenocarcinoma epithelial cells (HeLa), renal carcinoma cells (SK-RC-45) and breast adenocarcinoma cells (MCF-7). The oxomolybdenum(V) complexes are found to exhibit higher anticancer potency towards the cancer cells than the free ligand. Also, structure activity relationship (SAR) studies of this new series of oxomolybdenum(V) complexes indicate that the anticancer activity is to some extent dependent on the electronic effects of the halogen atom coordinated to the molybdenum centre.


Asunto(s)
Antineoplásicos/química , Quelantes/química , Complejos de Coordinación/química , Albúmina Sérica Bovina/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Bovinos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Fragmentación del ADN/efectos de los fármacos , Teoría Funcional de la Densidad , Electroquímica , Células HeLa , Humanos , Células MCF-7 , Relación Estructura-Actividad
20.
J Agric Food Chem ; 67(27): 7660-7673, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31250646

RESUMEN

Mushrooms are customary influential sources of pharmaceutically active metabolites. Usually lanostane-type triterpenoids from mushrooms had prospective for cancer disease treatments. Recently, a triterpenoid, astrakurkurol obtained from the fresh basidiocarps of the edible mushroom Astraeus hygrometricus, drew attention as a new cytotoxic therapeutic. The structural stability of this triterpenoid had been established with the amalgamation of density functional theory (DFT) calculations and study of single-crystal X-ray diffraction. To successfully manifest astrakurkurol as a potent cytotoxic therapeutics, a wide apprehension on the molecular and cellular mechanisms underlying their action is prerequisite. On this account, our study was directed to scrutinize the influence of this triterpenoid on human hepatocellular cancer cell model Hep3B. Encapsulating all experimental facts revealed that astrakurkurol had significantly decreased cell viability in a concentration-dependent manner. This effect was unveiled to be apoptosis, documented by DNA fragmentation, chromatin condensation, nuclear shrinkage, membrane blebing, and imbalance of cell cycle distribution. Astrakurkurol persuaded the expression of death receptor associated proteins (Fas), which triggered caspase-8 activation following tBid cleavage. Moreover, tBid mediated ROS generation, which triggered mitochondrial dysfunction and activated the mitochondrial apoptotic events. Astrakurkurol cytotoxicity was based on caspase-8-mediated intrinsic apoptotic pathway and was associated with inhibition at Akt and NF-κB pathway. Astrakurkurol had also inhibited the migration of Hep3B cells, indicating its antimigratory potential. These findings led us to introduce astrakurkurol as a feasible and natural source for a safer cytotoxic drug against hepatocellular carcinoma.


Asunto(s)
Antineoplásicos/farmacología , Basidiomycota/química , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Triterpenos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Difracción de Rayos X , Receptor fas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA